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ABSTRACT
This paper presents a study on dynamic optimization of
the catalytic transformation of Bioethanol-To-Olefins pro-
cess. The main objective is to maximize the total produc-
tion of Olefins by calculating simultaneously the optimal
control trajectories for the main operating variables of the
process. Using Neural Networks trained with two different
types of Evolutionary Algorithms, the optimal trajectories
have been automatically achieved, defining both an adequate
shape and their corresponding parameters. The results sug-
gest that, comparing with constant setpoints, the maximum
production is increased up to 37.31% when using Neural
Networks. The optimization procedure has become totally
automatic and therefore very useful for real implementation.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Computing methodologies → Neural net-
works;
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1. INTRODUCTION
The Bioethanol-To-Olefins process (BTO) consists of the

catalytic transformation of bioethanol into olefins over an
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acid catalyst. This is a key process in the concept of sus-
tainable refinery, incorporating biomass or derivatives as an
alternative feedstock to petroleum [1, 2].

The key point for the implementation of this process is to
perform an advanced control strategy by adjusting the op-
erating variables in a dynamic manner so that the product
quality can be maintained while extending the lifespan of
the catalyst. Due to the influence of multiple variables si-
multaneously over the reaction kinetics and the catalyst de-
activation, it is necessary to develop advanced optimization
strategies of the operational conditions that guarantees spe-
cific production objectives without exceeding the operation
limits to avoid an irreversible deactivation of the catalyst.

The present work has the objective of performing a multi-
variable dynamic optimization of the Bioethanol-To-Olefins
(BTO) process in order to maximize the total production of
olefins while extending the catalyst lifespan. An Artificial
Neural Network (NN) is trained using two different types
of Evolutionary Algorithms: the genetic algorithm available
in Matlab (GA) and the covariance matrix adaptation evo-
lution strategy (CMA-ES) [3] to optimize the operational
conditions of the process.

2. MATERIAL AND METHODS
The olefins production, given by the Equation (1), is the

objective function to be maximized.

max
T,Xw,WF−1

EO

∫ τ

0

RO
(
T,Xw,WF−1

EO

)
dt

WF−1
EO

(1)

The NN receives as inputs the main operating variable of
the process (reaction temperature (T ), mass fraction of wa-
ter in the feed (XW ) and space-time WF−1

EO) for the pre-
vious time step and the current catalyst activity level (a).
The output of the model are the current (at each time step)
operational set points of each variable. Please note that the
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Table 1: NN training results for the implemented structures.

Best Production Mean Production Optimisation

(gog
−1
catalyst) (gog

−1
catalyst ± σ) performance

# CMA-ES GA CMA-ES GA CMA-ES GA

- 72.75 72.14 70.53 ± 0.78 70.22 ± 0.63 0.5729 0.0059
4 99.91 92.89 90.56 ± 7.37 81.73 ± 6.63 0.1546 0.0357
5 98.97 98.32 93.53 ± 5.01 88.36 ± 7.62 0.1132 0.0194
6 99.83 98.54 90.93 ± 4.80 91.76 ± 6.73 0.0955 0.0323
7 99.61 99.35 93.04 ± 4.13 90.58 ± 8.06 0.0962 0.0296
8 97.99 96.26 91.81 ± 4.63 90.19 ± 4.04 0.1027 0.0356

upper bound of the integral (τ parameter) will attend two
early stopping criteria: catalyst activity (a) below 0.1; and
olefins conversion rate (XO) below 0.1. Whenever any of the
above criteria is violated, we consider that the production
has reached its maximum and should be stopped to proceed
with the catalyst regeneration phase.

In order to define the trajectories for each control variable,
it is necessary to define both the type of curve and the shape,
defining the parameters for each of them. In this work, an
NN has been used to directly generate the dynamic control
trajectories for each operating variable that maximize the
production of olefins (see Equation (1)).

The weights and biases of the NN have been trained di-
rectly using an EA that aims at maximizing the final total
production of olefins when simulating the process behaviour
under the control trajectories generated by the NN defined
by each individual of the EA.

Two different types of EA have been used. The GA avail-
able in Matlab and the CMA evolution strategy developed
by N. Hansen [3] using the default parameters. In both cases,
the individuals consist of vectors of real numbers with the
weights and biases defining the mapping computed by the
NN. During the optimization procedure, these weights ma-
trices and bias vectors are updated in order to define the NN
that is able to generate the dynamical control trajectories
that maximize the objective function.

The obtained results have been compared with previous
ones where constant set points were optimized for the main
operating variables using evolutionary algorithms [4].

3. EXPERIMENTATION
The first row in Table 1 shows the results using constant

operational conditions (without any NN); the following rows
present the number of hidden neurons tested. The second
and third columns show the production of olefins for the best
operational conditions (out of 10 repetitions) generated by
each of the implemented NNs optimized by the two evolu-
tionary algorithms. The next two columns show the mean
production and standard deviation. Finally, the last two
columns contain the Optimisation performance (ratio of
the maximum production divided by the number of func-
tion evaluations).

The best solution obtained by the CMA-ES algorithm cor-
responds to the feed-forward NN with 4-4-3 topology. Fig-
ure 1 shows an example of the control trajectories generated
with this topology. It should be emphasized that CMA-ES
has obtained similar results regardless of the neural topol-
ogy. On the other hand, the best solution found by the
GA corresponds to higher number of hidden neurons (feed-
forward NN with 4-7-3 topology). Moreover, the best solu-
tion for this topology found by the GA is slightly worse than
both the overall best solution and the best solution for this

Figure 1: An example control policy generated by the NN.

topology found by the CMA-ES. Finally, solutions provided
by the GA show differences up to 9 % depending on the type
of neural topology used.

When analysing the performance of both evolutionary al-
gorithms, it seems clear that CMA-ES produces better so-
lutions requiring fewer fitness evaluations, and therefore ob-
taining better optimization performance indexes. Finally, it
should be noted that trajectories optimized by the CMA-ES
procedure produce between 34.68 % to 37.31 % higher pro-
duction of olefins than when using constants trajectories.

The results are very promising. The trained neural net-
works have been able to find different trajectory types that
maximize the production objective. They have been able to
detect simultaneous regimen changes in all the operational
variables definitely determining an increase of the produc-
tion. This necessary regimen changes in the trajectories of
the control variables are very difficult to detect using stan-
dard techniques with no previous knowledge about the pro-
cess. The conclusion is that a NN succeeded in generating
the main control trajectories of the BTO process by defining
their most convenient curve form and shape defining param-
eters.
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