
Optimization Knowledge Center

A Decision Support System for Heuristic Optimization

Andreas Beham 1,2

andreas.beham@fh-ooe.at
Stefan Wagner 1

stefan.wagner@fh-ooe.at
Michael Affenzeller 1,2

michael.affenzeller@fh-ooe.at
1 Heuristic and Evolutionary Algorithms Laboratory

University of Applied Sciences Upper Austria, Softwarepark 11, Hagenberg, Austria
2 Institute for Formal Models and Verification

Johannes Kepler University Linz, Altenberger Straße 69, Linz, Austria

ABSTRACT
The task of selecting an appropriate algorithm instance for
a given optimization problem instance often requires signif-
icant experience. Efficient optimization requires a different
set of parameters or an entirely different algorithmic ap-
proach for some characteristics of problem instances. Ob-
taining such experience takes significant amount of time and
requires an in-depth analysis of the algorithms’ performance.
In addition to these difficulties, published results only pro-
vide a summary, the obtained raw performance data is often
not reused later on. In this work we want to give such data
more value and more publicity by storing it in a database
and reusing it when solving new problem instances. We
describe the information that the data should contain in or-
der to maximize reusability. Furthermore, we discuss three
use cases that supports optimization experts in their deci-
sions and allows them to perform a manual exploration of
the search space using available algorithm instances and the
possibility to decide on the starting solutions and thus bias
the search in a certain sub-space of the solution space.

Keywords
decision-support-system; knowledge base; heuristic opti-
mization

1. INTRODUCTION
Metaheuristic optimization experts draw their knowledge

from personal experience and published research work when
applying suitable algorithm instances to new problem in-
stances. Often comparisons are performed against results
that have been previously published. However, it can be
said that the results sections of most publications are only
the tip of an ice-berg and many of the raw data is never
reused again. Results that consist only of the final solution
quality after x seconds or x function evaluations fall short

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20–24, 2016, Denver, CO, USA.
c⃝ 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931724

of a more thorough analysis of the anytime behavior [13].
The final obtained quality distribution accompanied with
the standard deviation in tabular form or box-plots are not
addressing what would have happened if only half the time
was available or double the effort could be made and sim-
ilar questions. In a benchmark test of algorithm instances
the choice of a time limit is often arbitrary and cannot be
justified. The goal of heuristic optimization algorithms is
to deliver as fast as possible solutions that are as good as
possible. This is reflected better in studying the anytime be-
havior, that is the search quality as a function of the effort.
Babai has coined the term Las Vegas Algorithms to describe
algorithms where the runtime to obtain a solution with a
certain quality is a random variable [2]. The performance
can thus be described in form of a probability distribution
which can be compared quite well with other algorithms,
this is discussed further in Section 3.

If it wasn’t already difficult enough to obtain a complete
picture of an algorithm instance’s performance, it is severely
more complex when looking at the whole configuration space
and alternative algorithm instances that may or must be
considered. It is a priori unknown whether the increase of
the population size by one hundred leads to better results
than a different crossover. In order to tackle these issues
meta-optimization techniques have been developed that will
perform an optimization in the configuration space of al-
gorithms. F-Race and its corresponding implementation as
an R package [12, 22] have shown good potential in iden-
tifying suitable algorithm instances. Nevertheless, meta-
optimization is a “design-time” tool that allows to identify
a range of different configurations that will solve a certain
benchmark set very well. In “solve-time” one should choose
among a set of alternative instances in order to arrive at
good solutions quickly and without the need to search the
metaheuristic configuration space. It is thus in the interest
of optimization experts to have a collection of well suited
algorithm instances that provide a sample of different algo-
rithm configurations.

Another approach in this context has been pursued with
fitness-landscape analysis (FLA) [18, 19]. It is commonly
believed that the topology of the fitness landscape strongly
influences the performance of algorithms. If the topology
could be described well enough a discriminating function
could be created that would allow predicting the best per-
forming algorithm before applying it. In practice it is how-
ever difficult to identify topological properties without sam-

1331

pling from the solution space and evaluating the solutions
with respect to similarity and quality. Thus the study of
the landscape is not different from the application of an op-
timization algorithm only that the algorithms are different.
This is a valid critique, but targets the application of FLA
to algorithm selection only. The study of landscapes itself
is necessary basic research in order to derive new theories
for optimization. We will look at FLA in this context in
Section 2.
In the light of these developments it can be understood

that the application of heuristic optimization is a complex
task and that decision making and theory forming processes
should receive better tool support. Problem understanding
and algorithm benchmarking are complex topics that can
generate a lot of data that needs to be processed. In solv-
ing problems, knowledge can be gained that needs to be
presented in a more explicit way and with visual analysis
support in order to aid the user in making good algorithmic
choices.
The following sections will discuss methods that are rele-

vant in this context and their application in a decision sup-
port system that is described in this paper. We want to
present three use cases that should be supported, describe
their implementation in the Optimization Knowledge Center
(OKC), and discuss the methods’ application.

2. FITNESS LANDSCAPE ANALYSIS
The goal of performing FLA is to describe the topology

of the solution space. Ruggedness, deception, and neutral-
ity are among the landscape properties that are believed to
have a high impact on algorithm performance [14]. These
properties, are often not “either-or”, but can be observed to
a certain degree.
Ruggedness is described as the correlation of neighboring

points in the search space and the number of local optima
[16, 18]. Neutrality describes the presence of contiguous ar-
eas where a change in the solution within a certain neighbor-
hood does not result in a change in quality. Deceptiveness
may be regarded as a property of a landscape [14], how-
ever it has to be stated that it also depends on the search
method. An algorithm such as random search is not decep-
tible. The degree of greediness of an algorithm instance may
be correlated with the observed deceptiveness. We suggest
to describe the presence of deceptiveness as a decrease of the
probability of sampling solutions which are globally optimal
over the course of the search.
Several of these properties are correlated with each other,

for instance deceptiveness implies ruggedness while rugged-
ness contradicts neutrality. The distinction between rugged-
ness and deceptiveness is not entirely clear and both are
highly influenced by the neighborhood function. In contin-
uous search spaces, the choice of the sampling distance may
highly influence the perceived ruggedness of a landscape [14].
Further correlations arise with respect to other properties of
the problem instances. It may be observed, that the number
of local optima increases with problem dimension [6]. At the
same time it may be concluded, that ruggedness decreases
with problem dimension, as measured for example by the au-
tocorrelation length [7]. This can be explained in that many
neighborhoods only alter a fixed number of components of
a solution, for instance a 2− opt move changes 2 edges and
leaves N − 2 edges intact. It follows that with an increase
of N the relative change in fitness becomes smaller. At the

Figure 1: PCA projection of problem instances with
respect to their similarity in several characteristic
values. Lines indicate which point represents which
instance.

same time, the relative change to the solution is smaller and
thus the steepness of the gradient should remain identical,
but methods that are based on autocorrelation abstract the
change in solution to a unit of 1 in a time-series. Thus, it is
suggested that autocorrelation length should be studied in
combination with problem size in order to draw conclusions
on problem hardness [7].

The methods to perform fitness landscape analysis often
involve exploratory search algorithms. For example, in real-
valued search spaces one could sample three points along
a linear trajectory and evaluate the goodness of fit of a
quadratic model on the quality of those solutions [15]. There
are also several types of walks, e.g. a random walk that will
randomly sample solutions from the neighborhood advanc-
ing without bias. An analysis of the quality trajectory of
this random walk could reveal some properties of the fit-
ness landscape. Additional types of walks include adaptive
walks and up/down walks. The advantage of such walks is
that they are applicable to almost any problem unlike other
analysis methods that are meaningful only in a smaller con-
text of problems. There are still many open questions in the
theory of fitness landscapes which remains an active field for
studies. Several good overviews exist [18, 19].

When multiple such characteristics are collected for prob-
lem instances one can identify similarities among them
and create map-like plots by dimensionality reduction tech-
niques (e.g. principal components analysis (PCA) [21], t-
stochastic neighbor embedding (t-SNE) [25], self-organizing
maps (SOM) [10], or multi-dimensional scaling (MDS) [11])
or even supervised techniques such as neighborhood com-
ponents analysis (NCA) [8] if class labels can be assigned
to the data. In the present software system we have im-
plemented PCA, MDS, and SOM which provide a similar,
but nonetheless different picture. It may be useful for the
expert to not have only one projection method, but to com-
pare different projections in order to draw conclusions on
the proximity of problem instances. In addition, using the
OKC, experts may change the characteristics that are actu-
ally used to create the maps in the software system. Thus
the problem instance space can be explored with any subset
of characteristics with immediate results on the projection.
Figure 1 shows such a map for instances of the quadratic
assignment problem. Missing values in the characteristics,

1332

Algorithm 1 ECDF calculation from convergence graphs.

1: procedure GetEcdf(↓ cgraphs[][], ↓ target, ↑ ecdf)
2: Calculate(↓ cgraphs, ↓ target, ↑ h, ↑ m)
3: Sort(h); Sort(m) ◃ sorted array by key (=̂ effort)
4: total← 0
5: sum← length(cgraphs) ◃ number of runs
6: j ← 1
7: ecdf ← graph()
8: for i← 1 to length(h) do
9: total← total + h[i].Value
10: while j ≤ length(m) ∧m[j].Key < h[i].Key do
11: sum← sum−m[j].Value
12: j ← j + 1
13: end while
14: ecdf.Add(h[i].Key, total

sum
)

15: end for
16: return ecdf
17: end procedure

i.e. because a certain characteristic has not been calculated
for a given problem instance, are replaced with the median
value of that characteristic.
Problem instance similarity is an important first task in

the understanding of a new problem instance. In obtaining
several characteristics it should be possible to draw from
past experience by examining the performance of algorithm
instances that have been applied to similar problems.

3. ALGORITHM PERFORMANCE
It is important to measure algorithm performance in a

way that it remains useful after the publication of the re-
search work in which it is summarized. [3] describes a total
of 18 performance measures among them success ratio, boot-
strapped best, mean best (MBST), run-length distribution
(RLD) and many more.
In order to maximize reusability of results, final quality

values do not adequately represent performance for use in
expert-systems. These results always depend on the max-
imum amount of effort a certain algorithm instance was
given to compute them. So, quality-based measures lack
information on the convergence speed and do not depict the
time that is required to obtain them. On the other hand,
measures on the convergence speed such as efficiency rates,
quality-effort relationship, convergence velocity, and others
do not capture the quality that was achieved. It becomes
obvious that a single value that describes the performance of
an algorithm instance applied to a certain problem instance
is hardly feasible.
Among the better choices for performance measures are

run-length distributions (RLD). [9] describes metaheuristic
algorithm performance as a random variable with a certain
distribution. With a given effort there is a probability of
achieving a solution with a certain quality. For a range of
different quality-targets these RLDs are computed and the
expected run time (ERT) can be computed [9, 1]. The em-
pirical cumulative distribution function (ECDF) enables a
graphical comparison between algorithm instances, see Fig-
ure 3. The calculation base for ECDFs are convergence
graphs. These are monotonic functions that store the best
quality along with the amount of effort that has been in-
vested in achieving it. In order to save space when storing

Algorithm 2 Aggregating the hits and misses in conver-
gence graph data of multiple runs under the assumption of
minimizing the objective function.

18: procedure Calculate(↓ cgraphs[][], ↓ target, ↑ hits,
↑ misses)

19: hits← dictionary()
20: misses← dictionary()
21: for i← 1 to length(cgraphs) do
22: missed← true
23: last← length(cgraphs[i])
24: for v ← 1 to last do
25: if cgraphs[i][v].Quality ≤ target then
26: e← cgraphs[i][v].Effort
27: hits[e] = hits[e] + 1
28: missed← false
29: break
30: end if
31: end for
32: if missed then
33: le← cgraphs[i][last].Effort
34: misses[le] = misses[le] + 1
35: end if
36: end for
37: return hits,misses
38: end procedure

these graphs only those points should be provided where an
improvement is made including an additional point with the
final quality and the final effort. Recording the maximum
effort spent is necessary as we want to take into account runs
with different amount of maximum effort.

In the described software system it is possible to study
ECDF comparisons by grouping the runs according to cer-
tain parameters and problem instances. If no grouping is
performed the performance of all algorithm instances is com-
bined to see how the set of available instances may tackle
a single or multiple problem instances. If runs are grouped
by algorithm name, the performance of each instance is dis-
played as can be seen in Figure 3. Furthermore, the opti-
mization knowledge center allows defining a range of target
values as relative deviations from the best-known quality.
Additionally, expected-runtimes are printed out to tables in
order to copy and paste the results to other applications.

Our method for computing ECDFs from convergence
graphs is described in Algorithms 1 and 2. In these pseudo-
code descriptions down arrows represent inputs and up ar-
rows denote outputs of the procedures.

Contrary, to controlled experiments with pre-defined pa-
rameters the OKB (see Section 4.1) may contain a large set
of runs from different experiments with varying maximum
effort. But, ECDF describes the cumulative ratio of success-
ful to total runs. In our case, total runs must be seen as a
function of the effort. Therefore, we have taken into account
that there are runs that are shorter than others and also un-
successful (called a “miss”) in reaching the target. Consider
the scenario where a previous experiment is repeated, but
this time with a higher maximum effort. It would not be
correct to count all runs to the total as we do not know if
a miss would turn into a hit given more runtime. We thus
compute the cumulative success probability at effort x as
the ratio of successful runs at effort x to all runs where at
least effort x was observed. In Algorithm 1 variables total

1333

and sum represent the successful and total runs at a certain
effort. In Algorithm 2 the convergence graph data, which
is a simple list of tuples, is converted into a dictionary of
hits and misses. In this dictionary, effort is the key, while
the number of times a hit or miss was observed at a certain
effort is the value. To the best of our knowledge no such
algorithm has been previously published.
In calculating the ERT with equation (1) (see [1]) de-

termining the success probability ps as the ratio between
successful and total number of runs also requires adapta-
tions. Unsuccessful runs that are conducted with too little
effort cannot be considered as actual unsuccessful attempts.
For example, when a certain algorithm instance requires an
observed effort of about 10000 ± 1000 then a run with a
maximum effort of e.g. 2000 can hardly be considered an
unsuccessful attempt. In our pruning strategy we have cho-
sen to remove all runs where the run-length is less than two
standard deviations from the mean of all successful runs.
Among the remaining set of runs R we then compute the
average run-length of all successful runs E(T s) and the suc-

cess probability ps = |{r∈R|r is successful}|
|R| in order to obtain

the expected runtime according to equation (1).

ERT =
E(T s)

ps
(1)

While RLDs and ERT are well suited to describe algo-
rithm performance the difficulty lies in defining“effort”. Two
options have been used in the past, the execution time on
the one hand and the number of calls to the fitness func-
tion (function evaluations or FEs) on the other hand. Both
options have their own advantages and disadvantages.

3.1 Execution Time
The amount of wall clock time that has passed since the

algorithm was started is a directly relevant measure for any-
one seeking to apply a certain algorithm instance. Often
time constraints based on wall-clock time are easier to de-
fine and in real-world applications there may be hard limits
regarding the maximum time until a good answer is found.
However, there are a number of disadvantages which the
reader might have already on her mind:

• Comparing execution time requires a reference ma-
chine

• Execution time is implementation specific (e.g. slow
implementation of an algorithm, different platform)

• Parallelization affects execution time

• Examining algorithm results while the algorithm is
running (for instance console prints or GUI updates)
may affect execution time

Often the wall clock performance of an algorithm depends
on how well it is implemented. An implementation may be
changed with respect to run time later on and while the re-
sults based on quality remain the same it is now several times
faster. This requires to retest the performance repeatedly.

3.2 Function Evaluations
Effort depends to a large part on the complexity and run-

time of evaluating the fitness function. Thus the number

Figure 3: An abstracted version of the OKB data
model, still unrealized parts are highlighted. The
arrows model dependencies similar to foreign-key re-
lationships. Here Run is an entity that depends on
an algorithm and a problem instance.

of times this function is called is a good indicator of algo-
rithm performance. However, for lower dimensional prob-
lems or for algorithms that make intensive computations in-
between function evaluations (e.g. learning meta-models)
this measurement of effort is not correct. Additionally, for
some problems the fitness can be computed faster through
so called delta-evaluations. In these problems the fitness of
a solution needs to be re-evaluated only for those compo-
nents that changed. For instance, in the quadratic assign-
ment problem, a full solution evaluation has complexity of
O(N2), but swap moves can be computed with a complexity
of O(N) and even O(1) [23] if the quality of previous moves
is retained between iterations. Delta-evaluations typically
exist for white-box problems and used in fast local search
algorithms in order to compute the qualities in a neighbor-
hood efficiently. For black-box problems where the actual
fitness function is not known or too complex (i.e. simulation)
delta-evaluation cannot be used. A trade-off is to compute
delta-evaluations in terms of full solution equivalents.

Summarizing, execution time is too closely linked with
the hardware environment that is used to perform the tests
which is changing rather fast. We think that function eval-
uation (FE) is the more promising description of effort. It
is in our interests that we obtain measurements which are
useful for a longer period of time. Execution time is invali-
dated quickly by the introduction of new hardware, change
to the implementation detail of an algorithm instance, or
the change to a different platform (e.g. .Net on Windows vs
Mono on Linux).

4. EXPERT KNOWLEDGE
Experts accumulate knowledge over time in that they re-

member algorithm configurations that have been repeatedly
proven to be successful on some problem instances. Thus,
an expert has a handful of configurations at hand that she
would test on a new problem instance. In the described sys-
tem it should be possible to store those algorithm instances
in a database and thus share them with other experts. By
performing runs and storing them in the database as well
we can visualize and compare the performance of algorithm
instances and thus make some part of the knowledge of the

1334

Figure 2: Comparison of several empirical cumulative distribution functions (ECDF) for algorithm instances
seeking to find the optimal solution of the QAPLIB’s esc32a instance.

experts more explicit. Finally, experts usually have a men-
tal framework that they apply to optimization problems and
which they often try to implement in form of a new algo-
rithm. However, such a mental framework is highly adaptive
to the current situation and the description of self-adaptive
algorithms is both difficult and highly empirical. We want to
describe a manual approach where experts are able to ap-
ply their mental model by repeatedly executing algorithm
instances in the solution space. In this process experts have
the possibility of reusing already found solutions as starting
points. We think that this may be a helpful first step to im-
plementing that model in an algorithm. Additionally, with
such results stored in the database, it may become possible
to detect that it is beneficial to apply algorithm instance
B with the resulting solution of algorithm instance A using
machine learning techniques.

4.1 Optimization Knowledge Base
The optimization knowledge base (OKB) is a database

and a set of web service methods to query and manipulate
the data [20]. An abstract view on the OKB data model is
depicted in Figure 3. The database is designed to store al-
gorithm and problem instances as well as the runs that have
been observed and the solutions that have been achieved.
Each run is split up into several values which may either be
a parameter or a result. Values that cannot be stored as
integral data types have to be serialized to binary format.
In addition algorithm and problem instances and solutions
are also stored in binary format. This is not optimal as bi-
nary data can be read only by the software that uploaded
the information. Nevertheless, complex types are difficult

to describe in a relational database. The use of document-
oriented databases may be explored in the future.

Currently, the OKB does not store inference rules or rec-
ommendation models and these have to be calculated on the
client. This information shall be included in the OKB at a
later date.

4.2 Use Cases
We want to describe three use cases that we think are

important for experts in heuristic optimization. In general
we assume that the expert approaches the knowledge center
with a new and previously unseen problem instance.

1. Understanding of the problem instance

2. Solving the problem instance

3. Documenting and learning from the process

These use cases are overlapping to some degree as the
understanding of a problem instance increases when per-
forming several attempts to solve it. When analyzing the
results of a certain solver with known properties, for in-
stance population-based exploratory search or randomized
local search, the user can formulate hypothesis on the struc-
ture of the problem instance. Most algorithm instances are
created with the idea that it can compute a solution effi-
ciently for some fitness landscape model. If a better per-
formance can be observed with this solver than with others
it can be assumed that this landscape has the respective
properties. We think that methods such as fitness land-
scape analysis should be combined with performance data
to create better pictures on problem instance similarity.

1335

Figure 4: Some obtained solutions to the kra30a
QAPLIB instance layed out according to multi-
dimensional scaling of the distance matrix in solu-
tion space. Note that this does not represent a LON,
the text represents the solution id followed by the
quality. It may be a helpful tool when deciding if
a certain algorithm instance should be started from
an existing solution.

Understanding
Users would probably like to identify similar problem in-
stances and see whether there are clusters or neighboring
instances. In the optimization knowledge center we sup-
port several projection methods to visualize these clusters
such as PCA, MDS, and SOM. An important part is the
selection of the characteristics that are used in the projec-
tion method. This may result in entirely different maps.
Highly experienced users probably want the possibility to
choose freely among the characteristics and explore alter-
nate pictures, while less experienced users would certainly
like a reasonable default. Figure 1 displays a map of prob-
lem instances of the quadratic assignment problem (QAP)
from various benchmark libraries that are projected using
PCA. The data basis has been calculated from properties
of the QAP (problem dimension and coefficient of variation,
symmetry, sparsity, skewness, and disparity of both the flow
and the distance matrix). Such simple properties are fast to
calculate for a new QAP instance.
Another level of understanding can be obtained in analyz-

ing the solutions from a certain problem instance. Networks
may be formed among solutions, such as for instance local
optima networks (LON) [17] where the landscape is repre-
sented as a graph. Nodes in a LON are local optima and
edge weights represent transition probabilities between their
associated basins of attraction. In visualizing a LON nodes
are displayed in different sizes in relation associated basin’s
size, while the node’s color is related to its quality. A vi-
sual inspection of such a network may easily reveal local
optima that are highly attractive, but of worse quality. The
disadvantage in analyzing LONs is that they are very ex-
pensive to compute and require a thorough exploration of
the solution space. In the OKC we have thus implemented
a visualization of solutions regarding their similarity only.
Figure 4 shows identified solutions to the kra30a problem
instance where the similarity matrix was projected to two
dimensions using MDS.

Solving
In solving problem instances experts seek to identify good
solutions given a randomly initialized starting solution.
However, they may also want to reuse existing solutions in
that they aim to search certain parts of the solution space
more thoroughly. Seeding of algorithms is a way for the ex-
pert to have more control over the exploration or exploita-
tion of the search space. Experts may choose certain solu-
tions as starting points for the algorithm instances. There
are two kinds of seeding strategies:

• Cloning

• Sampling

When cloning the solutions are directly included in the
starting configuration of the algorithm as they are. This is
a useful strategy for single-solution metaheuristics that aim
on intensifying the search space around a certain solution.
When sampling only some components of the seeded solu-
tions are used and solutions may either be a mix of several
seeded solutions or they may contain random components.
Mixing occurs in a process that is similar to crossover. Such
a strategy may be more suitable for population-based meta-
heuristics where components of seeding solutions are intro-
duced into the starting population, but could also be used
for single-solution metaheuristics.

In the presented software system, experts have the possi-
bility to draw on a set of algorithm instances that they may
apply. As has been discussed, the whole parameter space
of metaheuristic algorithms is quite large leading to an un-
supportable large amount of algorithm instances. The idea
is that algorithm designers provide only a limited “hand-
selected” set of algorithm instances. Each of these is then
treated as an independent entity in the tests. Potentially,
these instances should provide some meaningful, but basic
self-adaption such as changing parameters that are influ-
enced by the size of the solution space. For instance, a tabu
search approach may require a longer tabu list when the
solution space becomes larger.

The OKC software system also provides recommendation
algorithms to experts that can be used to propose a rank-
ing of algorithm instances for a new problem instance. The
expected runtime of the ranked algorithm instances is also
estimated giving a hint to experts on the effort that should
be spent. Recommendation algorithms, such as k-nearest
neighbor, can be tested by leave one out crossvalidation on
the results of previously benchmarked problem instances.

Documenting and Learning
The presented software system allows uploading FLA char-
acteristics, runs and solutions to the OKB. Uploading this
information may improve algorithm instance recommenda-
tion in the future when a similar problem instance should
be solved.

It is not yet possible to store or retrieve learning models in
the OKB. Such information may be interesting as it would
make the system more attractive for users with less exper-
tise. Similar to how search engines on the web crawl sites
to update their index, a server process alongside the OKB
could periodically learn new and improved recommendation
models.

1336

5. OUTLOOK
In creating and discussing the use of such an expert sys-

tem many topics arise that may become important for other
researchers and algorithm designers. Here we want to select
two concrete topics and present some thoughts as outlook
to this paper.

5.1 Design of Heuristic Algorithms Instances
Algorithm instances that shall be used within the opti-

mization knowledge center should be designed in order to
meet a few important requirements:

• Stopping criteria that algorithm instances must pro-
vide

– Maximum number of function evaluations

– Maximum execution time

– (optional) Target quality

• Results that algorithm instances must provide

– Best found quality and solution

– Convergence graph

– (optional) Local optima

The optimization knowledge center does not know the spe-
cific algorithm instances. It assumes that the common prop-
erties described above are defined. If, for example, maxi-
mum evaluation is not available, the software system can-
not provide support to limit the runtime of the algorithm
instance. We have implemented a workaround such that the
OKC monitors the EvaluatedSolutions result and stops the
algorithm instance when it has surpassed the defined bud-
get.

5.2 Feature Model for Heuristic Algorithms
We think that it is important to tag algorithm instances

with certain features. This allows to know more about the
algorithm designer’s intentions and what can be expected
from an algorithm instance. Following could be a list of fea-
tures that may be included with one or the other algorithm
instances. This list is highly influenced by the categories of
search algorithms as described in [4, 5, 24]:

• Population-based vs single-solution search

• Memory-usage vs memory-less methods

• Single- vs multi-neighborhood

• Trajectory vs discontinuous search

• Deterministic vs stochastic search

• Iterative improvement

• Greedy construction

• Converging search

Of course, this list must be seen as only a starting point
to enabling a more thorough analyis and study of the be-
havior of algorithm instances. Still, it already raises some
questions regarding the value of these features. An algo-
rithm instance may both feature a trajectory and a discon-
tinous search behavior. For example, in variable neighbor-
hood search, the hill climber typically follows a trajectory to

a nearby local optimum while the perturbation with multi-
ple neighborhoods can be seen as a discontinuous approach.
Thus features may be present in an algorithm instance to a
certain degree. One could allow an additional parameter to
rate the presence of a feature for a given algorithm instance
in form of a percentage. However, such a rating would be
difficult to pinpoint to exact terms and would complicate
the description. Additionally, different algorithm designers
would judge the presence of a feature differently even if they
would design the same algorithm instance. Another possibil-
ity would be to create two categories one to describe major
features and another to describe minor features and not al-
low an overlap in these categories.

The goal of having such a feature model would be to use
it in learning about the performance. If there are correla-
tions in the data with respect to the presence or absence of
these features and the performance characteristics one could
draw additional conclusions for a certain problem class and
give new ideas for the creation of new algorithm instances.
Without such a feature model these conclusions are difficult
to make as algorithm instances are otherwise treated mostly
as black boxes.

6. CONCLUSIONS
We have described a system that is aimed at heuristic opti-

mization experts in order to manually apply certain solvers
to a new problem instance. We described three use cases
that are interesting for experts. In applying fitness land-
scape analysis and comparing problem instances to their
new ones they may obtain information on a priori suitable
algorithm instances to solve them. In applying multiple al-
gorithm instances to solve the problem instances solutions
are recorded and analyzed regarding quality and similarity
to gain additional knowledge. Through the ability to use
seeding the expert can intensify the search in some regions
of the solution space or explore a certain sub-space of the
solution space with a higher probability. Finally, by upload-
ing the information back to the OKB experts can continue
at another time as well as provide additional information
that is helpful in applying optimization to further problem
instances.

7. ACKNOWLEDGMENTS
The work described in this paper was done within the

COMET Project Heuristic Optimization in Production and
Logistics (HOPL), #843532 funded by the Austrian Re-
search Promotion Agency (FFG).

8. REFERENCES
[1] A. Auger and N. Hansen. Performance evaluation of

an advanced local search evolutionary algorithm. In
Proceedings of the 2005 IEEE Congress on
Evolutionary Computation (CEC), volume 2, pages
1777–1784, Sept 2005.

[2] L. Babai. Monte-carlo algorithms in graph
isomorphism testing. Technical Report 79-10,
Université tde Montréal, 1979.

[3] T. Bartz-Beielstein. Experimental Research in
Evolutionary Computation: The New
Experimentalism. Springer, 2006.

[4] M. Birattari, L. Paquete, T. Stützle, and
K. Varrentrapp. Classification of metaheuristics and

1337

design of experiments for the analysis of components.
Tech. Rep. AIDA-01-05, Intellektik, Darmstadt
University of Technology, 2001.

[5] C. Blum and A. Roli. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison.
ACM Computing Surveys (CSUR), 35(3):268–308,
September 2003.

[6] F. Chicano, F. Daolio, G. Ochoa, S. Vérel,
M. Tomassini, and E. Alba. Local optima networks,
landscape autocorrelation and heuristic search
performance. In Parallel Problem Solving from
Nature-PPSN XII, pages 337–347. Springer, 2012.

[7] F. Chicano, G. Luque, and E. Alba. Autocorrelation
measures for the quadratic assignment problem.
Applied Mathematics Letters, 25(4):698–705, 2012.

[8] J. Goldberger, G. E. Hinton, S. T. Roweis, and
R. Salakhutdinov. Neighbourhood components
analysis. In Advances in neural information processing
systems, pages 513–520, 2004.

[9] H. H. Hoos and T. StÃijtzle. Evaluating las vegas
algorithms - pitfalls and remedies. In Proceedings of
the Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI-98), pages 238–245, San Francisco,
CA, 1998. Morgan Kaufmann.

[10] T. Kohonen and P. Somervuo. Self-organizing maps of
symbol strings. Neurocomputing, 21(1):19–30, 1998.

[11] J. B. Kruskal. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1–27, 1964.

[12] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and
M. Birattari. The irace package, iterated race for
automatic algorithm configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de
Bruxelles, Belgium, 2011.

[13] M. López-Ibáñez, T. Liao, and T. Stützle. Parallel
Problem Solving from Nature - PPSN XII: 12th
International Conference, Taormina, Italy, September
1-5, 2012, Proceedings, Part I, chapter On the
Anytime Behavior of IPOP-CMA-ES, pages 357–366.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[14] K. M. Malan and A. P. Engelbrecht. Fitness landscape
analysis for metaheuristic performance prediction. In
Recent advances in the theory and application of
fitness landscapes, pages 103–132. Springer, 2014.

[15] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss,

C. Weihs, and G. Rudolph. Exploratory landscape
analysis. In Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, GECCO
’11, pages 829–836, New York, NY, USA, 2011. ACM.

[16] P. Merz and B. Freisleben. Fitness landscape analysis
and memetic algorithms for the quadratic assignment
problem. Evolutionary Computation, IEEE
Transactions on, 4(4):337–352, 2000.

[17] G. Ochoa, S. Verel, F. Daolio, and M. Tomassini.
Local optima networks: A new model of combinatorial
fitness landscapes. In Recent Advances in the Theory
and Application of Fitness Landscapes.
Springer-Verlag Berlin Heidelberg, 2014.

[18] E. Pitzer and M. Affenzeller. Recent Advances in
Intelligent Engineering Systems, chapter A
Comprehensive Survey on Fitness Landscape Analysis,
pages 161–191. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[19] H. Richter and A. Engelbrecht. Recent advances in the
theory and application of fitness landscapes. Springer,
2014.

[20] A. Scheibenpflug, S. Wagner, E. Pitzer, and
M. Affenzeller. Optimization knowledge base: An open
database for algorithm and problem characteristics
and optimization results. In Proceedings of the 14th
Annual Conference Companion on Genetic and
Evolutionary Computation, GECCO ’12, pages
141–148, New York, NY, USA, 2012. ACM.

[21] K. Smith-Miles, D. Baatar, B. Wreford, and R. Lewis.
Towards objective measures of algorithm performance
across instance space. Computers & Operations
Research, 45:12–24, 2014.

[22] T. Stützle and M. López-Ibáñez. Automatic (offline)
configuration of algorithms. In Proceedings of the 15th
Annual Conference Companion on Genetic and
Evolutionary Computation, GECCO ’13 Companion,
pages 893–918, New York, NY, USA, 2013. ACM.

[23] E. D. Taillard. Robust taboo search for the quadratic
assignment problem. Parallel Computing, 17:443–455,
1991.

[24] E.-G. Talbi. Metaheuristics: From Design to
Implementation. John Wiley & Sons, 2009.

[25] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of Machine Learning Research,

9:2579–2605, 2008.

1338

