
Evolution Evolves with Autoconstruction

Lee Spector
School of Cognitive Science

Hampshire College
Amherst, Massachusetts, USA
lspector@hampshire.edu

Nicholas Freitag McPhee
Div. of Science & Mathematics

U. Minnesota, Morris
Morris, Minnesota, USA

mcphee@morris.umn.edu

Thomas Helmuth
Dept. of Computer Science

Washington and Lee U.
Lexington, Virginia, USA
helmutht@wlu.edu

Maggie M. Casale
Div. of Science & Mathematics

U. Minnesota, Morris
Morris, Minnesota, USA

casal033@morris.umn.edu

Julian Oks
School of Cognitive Science

Hampshire College
Amherst, Massachusetts, USA
juao15@hampshire.edu

ABSTRACT
In autoconstructive evolutionary algorithms, individuals im-
plement not only candidate solutions to specified computa-
tional problems, but also their own methods for variation of
offspring. This makes it possible for the variation methods
to themselves evolve, which could, in principle, produce a
system with an enhanced capacity for adaptation and supe-
rior problem solving power. Prior work on autoconsruction
has explored a range of system designs and their evolution-
ary dynamics, but it has not solved hard problems. Here
we describe a new approach that can indeed solve at least
some hard problems. We present the key components of this
approach, including the use of linear genomes for hierarchi-
cally structured programs, a diversity-maintaining parent
selection algorithm, and the enforcement of diversification
constraints on offspring. We describe a software synthe-
sis benchmark problem that our new approach can solve,
and we present visualizations of data from single successful
runs of autoconstructive vs. non-autoconstructive systems
on this problem. While anecdotal, the data suggests that
variation methods, and therefore significant aspects of the
evolutionary process, evolve over the course of the autocon-
structive runs.

1. INTRODUCTION
Designers of evolutionary algorithms have long faced deci-

sions about which aspects of their algorithms they should try
to specify explicitly themselves, and which aspects should be
allowed to evolve by variation and selection.

In traditional genetic algorithms and genetic program-
ming systems, solutions to problems evolve but almost ev-
erything else is specified by the system designer. However,
several researchers have developed systems in which aspects
of the systems themselves are subject to evolutionary adap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECADA 2016 Denver, CO USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931727

tation [2, 34, 3, 9, 25, 10, 33, 4, 52, 31, 53]. In some cases, the
primary aim of such “meta-evolutionary,” or “self-adaptive”
system research is to alleviate the burden on human system
designers and applications engineers for specifying system
configuration information or parameters. Other researchers,
however, are motivated by the hope that evolution could do
a better job than humans can do in making system design de-
cisions, and that self-evolving evolutionary algorithms might
therefore be able to solve problems that are beyond the reach
of more “hard-coded” systems.

Various aspects of an evolutionary algorithm might be al-
lowed to evolve, ranging from mutation rates to mate se-
lection algorithms. Several researchers have noted that the
design of variation methods, in particular, is both crucial
and non-trivial, and have considered ways in which genetic
operators might be produced and improved by evolutionary
processes. Genetic programming systems are well suited to
work in this area, which has sometimes been called “meta-
genetic programming,” because genetic programming sys-
tems are designed to evolve programs, and because genetic
operators are themselves programs [30, 22, 8, 51, 7, 12].

“Autoconstructive evolution”is the name given to a partic-
ular approach to the evolution of variation in an evolution-
ary computation system, in which the evolving individuals
implement not only candidate solutions to specified compu-
tational problems, but also their own methods for variation
of offspring [35, 49, 38, 13, 14]. This makes it possible for
the variation methods in the population to themselves be
varied, and thereby to evolve.

Autoconstructive evolution systems can be contrasted to
other meta-genetic programming approaches, in which the
evolving variation methods are distinct from evolving prob-
lem solutions, and are sometimes evolved using distinct vari-
ation, selection, and assessment methods. In autoconstruc-
tive evolution the methods for variation are encoded in the
same individuals that are being evolved as solutions to the
target problem. The autoconstructive approach is arguably
more biological than other approaches to meta-evolution,
because although many aspects of biological variation mech-
anisms are shared across the biosphere and have been con-
served for billions of years, others vary from organism to
organism and change over the course of evolution.

Whether the autoconstructive approach can produce more
powerful evolutionary computation systems than those pro-
duced by other approaches is currently an open question.

1349

Prior autoconstructive evolution systems could only solve
relatively simple problems, but they demonstrated and al-
lowed for exploration of the evolutionary dynamics that re-
sult when variation methods can themselves vary as com-
ponents of individuals. The fact that these systems could
be outperformed by standard genetic programming systems
was not surprising; whereas standard systems employ human-
designed variation mechanisms, autoconstructive evolution
systems must discover effective variation mechanisms and
maintain or enhance them over evolutionary time. The
prior work allowed for the study of fundamental principles
of autoconstructive evolution, but it did not produce high-
functioning problem-solving systems; the methods did not
reach the critical threshold for self-improvement that would
permit higher levels of evolutionary innovation to occur.

In this paper we describe a new approach to autocon-
struction that can indeed solve at least some hard problems.
In the next section we describe Push, a representation for
evolving programs that was originally developed to support
autoconstruction and has been used in several previous stud-
ies. We then describe the key components of our new ap-
proach, which is implemented in a system called AutoDoG
(for“Autoconstructive Diversification of Genomes”), empha-
sizing the fact that we do not yet know which components
may be responsible for AutoDoG’s successes. Next, we de-
scribe a software synthesis benchmark problem, “Replace
Space with Newline,” that AutoDoG can solve, and we com-
pare data from single successful runs of autoconstructive
vs. non-autoconstructive systems on this problem. Finally,
we argue that the data suggests that variation methods,
and therefore significant aspects of the evolutionary process,
evolve over the course of the autoconstructive runs.

2. THE PUSH LANGUAGE
Push is a programming language that was developed to

serve as the language in which evolving programs are ex-
pressed [35, 49, 45, 15]. It has a minimal syntax while
nonetheless providing unusual semantic power through the
use of a multi-type stack-based execution architecture and
the inclusion of code-manipulation instructions.

While the Push language cannot be described completely
here, it can be characterized briefly as a stack based language
with a separate stack for each data type. Among the sup-
ported data types is code, which can be manipulated and
executed. Programs are executed by putting them on the
exec stack, from which the interpreter continuously takes
and processes items. When the interpreter sees literals it
pushes them onto stacks as indicated by their types. When
it sees instructions, it executes them, taking any needed ar-
guments from stacks of the appropriate types and pushing
any results onto stacks of the appropriate types. If the ar-
guments needed by an instruction are not available on the
stacks, then the instruction acts as a“NOOP”and does noth-
ing. The exec stack can be manipulated in the same ways
as other data stacks, and this simplifies the implementation
and evolution of a wide range of novel control structures.

Push has several features that facilitate the evolution of
complex programs. Its multi-stack architecture allows pro-
grams to manipulate multiple data types without syntax
restrictions and also without the possibility of type errors
occurring [49]. Its re-entrant interpreter loop simplifies the
evolution of several forms of iteration, recursion, and mod-
ularity [45, 41]. Its minimal syntax allows for simple hill-

climbing simplification algorithms to effectively minimize
the size of evolved programs [43]. It has been been used
for a range of applications and as the foundation for sev-
eral studies of new genetic programming techniques [50, 29,
47, 46, 48, 37, 6, 42, 44, 23]. Push implementations have
been written in C++, Java, JavaScript, Python, Common
Lisp, Scheme, Erlang, Clojure, and R. Many of these are
available for free download from the Push project web page,
http://pushlanguage.org.

Most prior studies and applications of Push have used
human-specified variation (crossover and mutation) meth-
ods, as are used in most other genetic programming systems.
These have ranged from tree-swapping operators similar to
Koza’s [24], to operators that control program size [6] or
facilitate uniform variation [42]. No autoconstructive evolu-
tion was involved in these studies, or in the uses of Push to
achieve human-competitive results [21].

Nevertheless, Push is well-suited for autoconstructive evo-
lution research, and indeed support for autoconstruction was
one of the driving forces behind the language’s original de-
sign [35]. In autoconstructive evolution, evolving programs
must interact with their problem environments while also
producing offspring. In Push, code for different tasks can be
freely intermingled, producing as many outputs of as many
types as needed, which can be left on data stacks at program
termination. Outputs can include both candidate solutions
to target problems and genomes of potential children. This
makes it as simple to express autoconstructive programs in
Push as it is to express other programs.

3. AutoDoG
Although autoconstructive evolution systems allow many

aspects of the evolutionary algorithm to evolve, one must
nonetheless make design decisions about the autoconstruc-
tive evolution system itself. What instructions will be avail-
able for varying offspring? What kind of access will indi-
viduals have to other individuals, for implementing recom-
bination? When will the production and variation of off-
spring take place, relative to fitness assessment? How will
the emergence of evolution-ending exact cloning strategies
be prevented? A range of answers to these and related ques-
tions have been explored in prior work.

For example, the Pushpop system produced children dur-
ing fitness assessment, using a Turing-complete collection of
code-manipulation instructions to generate a potential child
for each test case; subsequent tournaments selected indi-
viduals from whom potential children would be promoted
to the following generation (assuming that they were not
clones of their parents, which was prohibited) [49]. Indi-
viduals in Pushpop could conduct tournaments among the
rest of the population, from which they could take mates,
and they could could use code from their mates in the con-
struction of children and even in the computation of solu-
tions to the target problem. Pushpop could solve only rel-
atively simple problems (for example, symbolic regression
of y = 5x2 + x − 2), and because of the ways in which in-
dividuals could depend on others in the population, it was
often difficult to understand how evolved solutions actually
worked. Nonetheless, the system allowed for the study of
evolutionary dynamics under autoconstruction [36].

Subsequent systems explored a variety of alternatives, in-
volving, for example, changes to the reproductive instruc-
tion set, changes to the ways in which mates (if any) are

1350

selected, and changes to constraints on the birth (for exam-
ple, extending the “no cloning” rule to prohibit other forms
of pathological replication) and constraints on selection (for
example, favoring parents with non-stagnant lineages) [38,
14]. They also explored applications to different classes of
problems, including the evolution of agent behaviors in a 3D
virtual world [48] and the evolution of programs with speci-
fied structural properties [11]. We cannot describe all of the
previous studies here in detail, and will instead focus only
on the design decisions behind our new system, AutoDoG
(for “Autoconstructive Diversification of Genomes”).

Before we describe the features of AutoDoG, however, we
want to be clear that we do not know which of these, or
which combinations of these, may be responsible for the fact
that AutoDoG appears to be capable of solving more difficult
problems than previous autoconstructive evolution systems.
We have results, including those described below, that seem
to indicate that something about our new approach consti-
tutes an important step in the right direction. More study
will be required, however, to determine what role each of
the new features plays, if any, in the improved performance
of AutoDoG relative to previous systems.

3.1 Diversity-maintaining parent selection
Many problems involve multiple test cases that are used

to determine the performance of programs during evolution.
There are several ways in which the results of multiple test
cases can be taken into consideration during parent selec-
tion. The most common approach is to sum the squares or
the absolute values of the errors across all cases, and then
to select parents by tournaments favoring programs with
lower total error. This can work well in simple, homogenous
problems, but it can work poorly when cases are heteroge-
neous, unbalanced, or interdependent. A technique called
“implicit fitness sharing,” which was first described in [32],
and later adapted for genetic programming in [26], uses a
weighted sum, where weights are inversely proportional to
the number of individuals that solve a particular case; this
gives a program a greater reward for solving a case when
fewer individuals in the population solve that case.

A newer approach, called “lexicase selection,” performs
significantly better than tournament selection, either with
or without implicit fitness sharing, on many kinds of prob-
lems [39, 20]. In lexicase selection, each parent selection
event starts with a pool that contains the entire population.
The pool is then filtered on the basis of performance on in-
dividual fitness cases, considered in random order one at a
time. For each case, it retains only those individuals that
are best on that case. This process filters the population us-
ing a kind of “lexicographic ordering” of cases. Over many
selection events, each of which will filter the population us-
ing a sequence of cases in a different random order, this will
select parents that are best on each individual case and, in
the limit, on all pairs and larger subsets of the cases.

Lexicase selection was developed for the sake of its antici-
pated effects on program search, but it could also be argued
that it is more analogous to selection in nature than are prior
algorithms. Individual biological organisms are subjected to
sequences of challenges over their lifetimes, reproducing if
they successfully handle the challenges that they happen to
face before the opportunity arises; they do not become par-
ents on the basis of their average ability to handle all possible
challenges that might arise.

Lexicase selection appears to help solve“modal”problems,
in which qualitatively different modes of response are re-
quired for inputs from different regions of the domain. It
also appears to help solve problems that are “uncompromis-
ing” in the sense that a solution must perform as well on each
test case as it is possible to perform on that case; that is,
for which it is not acceptable for a solution to perform sub-
optimally on any one case in exchange for good performance
on others [20]. Lexicase selection performs significantly bet-
ter than the standard approach and than implicit fitness
sharing, allowing the solution of more problems, in fewer
generations, on a benchmark suite of problems taken from
introductory programming textbooks [27, 19]. Analysis has
shown that lexicase selection produces and maintains popu-
lation diversity significantly better than previous techniques,
and that it appears to combine exploration and exploitation
in novel ways [15, 16]. This may be particularly important
for autoconstructive evolution systems, in which one can-
not rely on hand-coded mutation and crossover operations
to maintain diversity and support exploration.

3.2 Linear genomes
Several previous autoconstructive evolution systems have

produced children in the form of Push programs, which can
have a nested hierarchical structure (expressed with paren-
theses), using code-manipulation instructions to access and
alter the programs of the parent(s) in order to produce a
child. Recently, however, a linear genome format for Push
programs has been developed, under the name of “Plush,”
where the “l” is for “linear” [17]. Plush was developed in
part to facilitate the development of genetic operators with
“uniformity”properties [42], and in part to increase the likeli-
hood that instructions that are intended to operate on struc-
tured code blocks, for example conditionals like exec_if and
iterators such as exec_do*range, will in fact receive such
code blocks as arguments.

To support translation of linear Plush genomes into struc-
tured Push programs, each instruction that is intended to
operate on code blocks is annotated with the number of code
blocks that it should open. During translation, this informa-
tion is used to open parenthesized sub-programs, while “epi-
genetic close markers” on the linear genome indicate where
parenthesized sub-programs should end. Additionally, epi-
genetic silencing markers can be turned on to indicate that
marked instructions should not be considered when trans-
lating a genome into a Push program.

In AutoDoG, autoconstructive reproduction operates on
the Plush genomes of two parents to produce the Plush
genome of a child. Genome manipulation instructions are
included in the instruction set, and the (single) parent that
is run may use these to produce a child from the genomes
of the two parents. Table 1 shows AutoDoG’s current set of
genome instructions.

3.3 Diversification constraint
From the first work on autoconstructive evolution it was

recognized that programs in a population could not be al-
lowed to make exact clones of themselves. If they were
allowed to do so, and if a cloning program were to arise
with reasonably good performance on the target problem,
then the descendants of the cloning program, all of which
would be identical, would rapidly fill the population. Af-
ter this happens no further evolution is possible, since these

1351

Table 1: Genome instructions in AutoDoG

Instruction Description

close_dec Decrement close marker on a gene
close_inc Increment close marker on a gene

dup Duplicate top genome
empty Boolean, is genome stack empty?
eq Boolean, are top genomes equal?

flush Empty genome stack
gene_copy Copy gene from genome to genome

gene_copy_range Copy genome segment
gene_delete Remove gene
gene_dup Duplicate gene

gene_randomize Replace with random
new Push empty genome

parent1 Push first parent’s genome
parent2 Push second parent’s genome
pop Remove top genome
rot Rotate top 3 genomes on stack

rotate Rotate sequence of top genome
shove Insert top genome deep in stack
silence Add epigenetic silencing marker

stackdepth Push integer depth of genome stack
swap Exchange top two genomes

toggle_silent Reverse silencing of a gene
unsilence Remove epigenetic silencing marker

yank Pull genome from deep in stack
yankdup Copy genome from deep in stack

programs can only generate offspring that are identical to
themselves. Although one could conceivably apply human-
devised mutation operators to cloned offspring, this would
eliminate the evolutionary pressure for generating variation
with the code in the programs themselves, which is what will
allow the variation mechanisms to evolve. Instead, therefore,
autoconstructive evolution systems have simply prevented
clones from entering the population; results of reproduction
events that would produce clones have either been discarded
or replaced with new random individuals.

AutoDoG broadens the “no cloning” rule to require that
offspring are only allowed to enter the population if they
pass a more stringent diversification test. Specifically, to
test if an individual will be permitted to enter the popula-
tion, its program is run to produce several temporary chil-
dren, with itself as its mate. These children are used only
for the diversification test, and are discarded after the test is
complete. The program passes the diversification test only
if the temporary children differ both from the program itself
and from each other. Furthermore, some of of the tempo-
rary children must differ from the program itself by different
amounts (which is calculated as the Levenshtein distance be-
tween linearized representations of the Push programs). If
an individual that has been produced by autoconstruction
fails the diversification test then a new, random individual
is generated. If that new, random individual passes the di-
versification test then it is added to the population in place
of the original individual. If it too fails the diversification
test, then an individual with an empty genome is added to
the population instead. This is intended to ensure that af-
ter the first, random generation, only individuals that pass
the diversification test will be allowed in the population and
compete for selection as parents in the next generation.

AutoDoG’s current diversification constraint is only one
of many possible such constraints, and perhaps not the most
effective. Ideally, individuals that satisfy the constraint will
produce descendants that vary in the ways in which they
vary their offspring, thereby allowing variation methods to
evolve. This is not necessarily true for the current con-
straint, and for this reason we are exploring alternatives.
In the interim, we have used the constraint described here
because it is simple and, it appears, reasonably effective.

3.4 AutoDoG architecture
AutoDoG is implemented within Clojush [40], which is an

implementation of the Push programming language and the
PushGP genetic programming system in the Clojure pro-
gramming language. In this implementation, AutoDoG is
simply PushGP, run using an autoconstruction genetic op-
erator rather than human designed mutation and crossover
operators. The overall control flow of AutoDoG is the same
as that of PushGP, which is a reasonably standard genera-
tional genetic programming system, with a main loop that
iteratively tests the error of all individuals and then builds
the next generation by selecting parents and passing them
to genetic operators. In AutoDoG, however, only the auto-
construction genetic operator is used.

The autoconstruction genetic operator takes two parents
(which will have been selected using lexicase selection), and
returns a child. It produces the child by running one of the
parents in a context in which the genomes of both parents
are pre-loaded on the genome stack and are also available
via the genome_parent1 and genome_parent2 instructions.
Prior to running the parent, any instructions that would
access input are replaced with code_noop instructions (so
that they will do nothing), and substitutions are made so
that autoconstructive_integer_rand and autoconstruc-

tive_boolean_rand will act as calls to the random value
generator, even though they are deterministic (pushing 0 or
false, respectively) when run during error testing. This
allows programs to use random values when generating off-
spring, even in problem domains for which it would be inap-
propriate to use a random number generator when testing a
program for errors. The child produced by running the par-
ent is then subjected to the diversification test described in
Section 3.3, and either the child (if it passes the test), a ran-
dom replacement (if that passes the test), or an individual
with an empty genome is returned as the result of the auto-
construction genetic operator and added to the population
for the next generation.

4. RESULTS

4.1 Solving a hard problem
Among the problems to which AutoDoG has been ap-

plied is “Replace Space with Newline,” a software synthesis
problem: given a string, print the string, replacing spaces
with newlines, and also return the integer count of the non-
whitespace characters [19]. This involves multiple data types
and multiple outputs, and requires conditionals and itera-
tion or recursion. Full details of the problem (instruction
set, test cases, etc.) are documented in [19, 18, 15], as is
the fact that this is a difficult software synthesis problem,
for which the best prior work has produced success rates
of only about 50%, and for which we have never observed
solutions that were generated randomly, without evolution.

1352

Figure 1: DL-distances between parent and child
during a single non-autoconstructive run of GP on
the Replace Space With Newline problem

AutoDoG does not succeed as reliably on this problem as
has PushGP in some other configurations, but it does solve
the problem approximately 5 − 10% of the time, producing
general solutions. Because this is a harder problem than has
been solved by previous autoconstructive evolution systems,
we take this as an indication that something in AutoDoG
is on the right track, and we sought to understand what is
happening in AutoDoG populations when it does succeed.

4.2 Evolution evolving
One way to better understand the behavior of reproduc-

tion mechanisms is to look at the the ways in which they
convert parent genomes into child genomes. Here we use
the Damerau-Levenshtein (edit) distances (DL-distances),
applying them to sequences obtained by extracting the three
components of each gene (the instruction and the close and
silencing epigenetic markers discussed in Section 3.2).1 The
stability of the reproduction mechanisms in traditional, non-
autoconstructive runs is apparent in Figure 1. Here we see
that, after the variation in the initial random population set-
tles out, the distances between parents and children remain
fairly consistent across the duration of the run. This is also
reflected by the changes in genome size over time (Figure 2),
where there is a slight upward creep, but the sizes are again
bounded in a fairly narrow range.

Looking at the same data for a successful autoconstruction
run, we see dramatically different behaviors. Figure 3 shows
the DL-distances between parents and children in this run.
Distances were consistently under about 200 throughout the
non-autoconstructive run, while here they are scattered in
clear clusters across a much broader range, extending up to
nearly 2, 500 around generation 100. There is similar clus-
tering in the plot of genome sizes over time (Figure 4), with
many of those clusters having clear analogues in Figure 3.

Presumably these different groupings represent different
approaches to replication that are being explored by au-
toconstruction. Most of the DL-distances in the autocon-
struction run are small (a quarter below 5, half below 20),
suggesting that most of the autoconstruction mechanisms in
this run create offspring by making small changes to the par-

1This is why the maximum DL-distances in Figure 3 are
about three times the largest genome sizes in Figure 4.

Figure 2: Genome sizes during a single non-
autoconstructive run of GP on the Replace Space
With Newline problem

Figure 3: DL-distances between parent and child
during a single autoconstructive run of GP on the
Replace Space With Newline problem

Figure 4: Genome sizes during a single autocon-
structive run of GP on the Replace Space With
Newline problem

1353

ent genomes. There are definite exceptions, however, such
as the steep “stair step” climb in both DL-distances and
genome lengths starting around generation 80, bringing the
largest genome lengths up to the maximum allowed (800)
for about 50 generations. There are also clusters with def-
inite directional trends in genome length, suggesting repro-
duction methods that consistently either lengthen or shorten
child genomes relative to parent genomes. Some of these ap-
pear to be dead ends, such as the strong downward trend in
genome sizes from about 100 around generation 25 down to
nearly 0 by about generation 75; presumably at some point
the programs got short enough that they either performed
too poorly on the test problem to be selected as parents or
were unable to satisfy the diversification constraint.

Of particular interest is the “forked” structure in Figure 4
that starts at generation 91 and continues to the end of the
run. The genome lengths start just under 100 and remain
fairly constant until around generation 140 when there is a
split. After the split, one section of the population continues
to have genome sizes around 100, while the other shows a
slow but steady increase in the genome sizes, coming close
to 200 by the end of the run. The beginning of this fork is
“seeded” by a new randomly generated individual in genera-
tion 91, introduced because an individual failed to pass the
diversification test as described in Section 3.3. That individ-
ual becomes the progentitor of this entire structure, whose
success (both at reproduction and at the target problem) ap-
pears to eventually dominate the run, driving out the other
clusters. The split, however, shows that it, too, continues
to evolve its reproduction methods, perhaps influenced by
recombination with individuals from the other clusters. The
ultimately successful individual is in fact located at the end
of the upper branch of this fork, and most of its immediate
ancestors are also located along that branch, suggesting that
the small increases in size were sometimes accompanied by
at least small improvements in performance on the problem.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented recent research on autocon-

structive evolution, in which evolving individuals implement
their own methods for variation of offspring along with so-
lutions to target computational problems. Our new ap-
proach, which is implemented in a system called AutoDoG,
uses linear genomes for hierarchically structured programs,
a diversity-maintaining parent selection algorithm (lexicase
selection), and the enforcement of diversification constraints
on individuals in the population.

We observed that AutoDoG is capable of finding general
solutions to the “Replace Space with Newline” software syn-
thesis problem, which sets a new standard for the problem
solving power of autoconstructive evolution. While auto-
constructive evolution has not yet been demonstrated to
have capabilities beyond those of genetic programming with
hand-designed genetic operators, these new results give us
hope that such results may not be too distant.

Toward that end, we have studied the details of the evolu-
tionary dynamics of AutoDoG in comparison to other (non-
autoconstructive) runs of PushGP, and we have presented
visualizations showing that the processes of variation, and
therefore the processes of evolution, do indeed vary and
evolve over the course of AutoDoG runs.

We do not yet know which features of AutoDoG are pri-
marily responsible for its problem-solving power, and inves-

tigation of this question is clearly the next order of busi-
ness. Through study of this question, further study of the
evolutionary dynamics of successful and unsuccessful runs
of AutoDoG, and refinement of the methods that it uses for
autoconstruction (for example, refinement of the diversifi-
cation constraint discussed in Section 3.3), we hope even-
tually to produce autoconstructive evolution systems with
problem-solving power that rivals or exceeds that of genetic
programming systems with hand-designed genetic operators.

Another promising area for future work is the use of meth-
ods presented here in other kinds of evolutionary computa-
tion systems. For example, in the Avida artifical life plat-
form [1], it is possible for digital organisms to encode proce-
dures for varying their offspring, although in practice they
generally make exact copies that are subjected to an exter-
nally imposed mutation process to produce variation. In
Avida, variation methods encoded in individuals are rarely
observed, they have never been observed to contribute sig-
nificantly to evolution, and have sometimes been explicitly
prohibited [5, 28]. It would be interesting to see if the use
of techniques presented here, particularly the enforcement
of diversification constraints, might allow for autoconstruc-
tive evolution, and therefore evolving variation methods, in
Avida and in other evolutionary computation systems.

6. ACKNOWLEDGMENTS
We thank the members of the Hampshire College Com-

putational Intelligence Lab for helpful discussions, J. Erik-
son for systems support, and Hampshire College for sup-
port for the Hampshire College Institute for Computational
Intelligence. We also thank the anonymous reviewers who
provided both corrections and insightful comments. This
material is based upon work supported by the National Sci-
ence Foundation under Grants No. 1129139 and 1331283.
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

7. REFERENCES
[1] C. Adami, C. T. Brown, and W. K. Kellogg.

Evolutionary Learning in the 2D Artificial Life System
Avida. In Artificial Life IV, pages 377–381, 1994.

[2] P. J. Angeline. Adaptive and self-adaptive
evolutionary computations. In M. Palaniswami and
Y. Attikiouzel, editors, Computational Intelligence: A
Dynamic Systems Perspective, pages 152–163. IEEE
Press, 1995.

[3] P. J. Angeline. Two self-adaptive crossover operators
for genetic programming. In P. J. Angeline and K. E.
Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 5, pages 89–110. MIT Press,
Cambridge, MA, USA, 1996.

[4] H.-G. Beyer and S. Meyer-Nieberg. Self-adaptation of
evolution strategies under noisy fitness evaluations.
Genetic Programming and Evolvable Machines,
7(4):295–328, Dec. 2006.

[5] A. W. Covert, R. E. Lenski, C. O. Wilke, and
C. Ofria. Experiments on the role of deleterious
mutations as stepping stones in adaptive evolution.
Proceedings of the National Academy of Sciences,
110(34):E3171–E3178, 2013.

1354

[6] R. Crawford-Marks and L. Spector. Size control via
size fair genetic operators in the PushGP genetic
programming system. In GECCO 2002: Proceedings of
the Genetic and Evolutionary Computation
Conference, pages 733–739. Morgan Kaufmann
Publishers, 2002.

[7] L. Diosan and M. Oltean. Evolutionary design of
evolutionary algorithms. Genetic Programming and
Evolvable Machines, 10(3):263–306, Sept. 2009.

[8] B. Edmonds. Meta-genetic programming: Co-evolving
the operators of variation. Elektrik, 9(1):13–29, May
2001. Turkish Journal Electrical Engineering and
Computer Sciences.

[9] A. E. Eiben, R. Hinterding, and Z. Michalewicz.
Parameter control in evolutionary algorithms. IEEE
Transations on Evolutionary Computation,
3(2):124–141, July 1999.

[10] R. Fry, S. L. Smith, and A. M. Tyrrell. A self-adaptive
mate selection model for genetic programming. In
Proceedings of the 2005 IEEE Congress on
Evolutionary Computation, volume 3, pages
2707–2714. IEEE Press, 2005.

[11] D. E. Goldberg and U.-M. O’Reilly. Where does the
good stuff go, and why? how contextual semantics
influence program structure in simple genetic
programming. In Proceedings of the First European
Workshop on Genetic Programming, pages 16–36.
Springer-Verlag, 1998.

[12] B. W. Goldman and D. R. Tauritz. Self-configuring
crossover. In GECCO 2011 1st workshop on
evolutionary computation for designing generic
algorithms, pages 575–582. ACM, 2011.

[13] K. Harrington, E. Tosch, L. Spector, and J. Pollack.
Compositional autoconstructive dynamics. In Unifying
Themes in Complex Systems Volume VIII: Proceedings
of the Eighth International Conference on Complex
Systems, New England Complex Systems Institute
Series on Complexity, pages 856–870. NECSI
Knowledge Press, 2011.

[14] K. I. Harrington, L. Spector, J. B. Pollack, and U.-M.
O’Reilly. Autoconstructive evolution for structural
problems. In Proceedings of the fourteenth
international conference on Genetic and evolutionary
computation conference companion, GECCO
Companion ’12, pages 75–82. ACM, 2012.

[15] T. Helmuth. General Program Synthesis from
Examples Using Genetic Programming with Parent
Selection Based on Random Lexicographic Orderings
of Test Cases. PhD thesis, College of Information and
Computer Sciences, University of Massachusetts
Amherst, USA, Sept. 2015.

[16] T. Helmuth, N. F. McPhee, and L. Spector. Lexicase
selection for program synthesis: A diversity analysis.
In R. Riolo, W. P. Worzel, and K. Groscurth, editors,
Genetic Programming Theory and Practice XIII.
Springer, 2015. in press.

[17] T. Helmuth, N. F. McPhee, and L. Spector. Plush:
Linear genomes for structured push programs. In
Genetic Programming Theory and Practice XIV,
Genetic and Evolutionary Computation. Springer,
2016.

[18] T. Helmuth and L. Spector. Detailed problem

descriptions for general program synthesis benchmark
suite. Technical Report UM-CS-2015-006, School of
Computer Science, University of Massachusetts,
Amherst, 2015.

[19] T. Helmuth and L. Spector. General program
synthesis benchmark suite. In GECCO ’15:
Proceedings of the 2015 Conference on Genetic and
Evolutionary Computation, July 2015.

[20] T. Helmuth, L. Spector, and J. Matheson. Solving
uncompromising problems with lexicase selection.
Evolutionary Computation, IEEE Transactions on,
19(5):630–643, Oct 2015.

[21] K. Kannappan, L. Spector, M. Sipper, T. Helmuth,
W. L. Cava, J. Wisdom, and O. Bernstein. Analyzing
a decade of human-competitive (“HUMIE”) winners:
What can we learn? In R. Riolo, W. P. Worzel, and
M. Kotanchek, editors, Genetic Programming Theory
and Practice XII, Genetic and Evolutionary
Computation, pages 149–166, Ann Arbor, USA, 8-10
May 2014. Springer.

[22] W. Kantschik, P. Dittrich, M. Brameier, and
W. Banzhaf. Meta-evolution in graph GP. In Genetic
Programming, Proceedings of EuroGP’99, pages 15–28.
Springer-Verlag, 1999.

[23] J. Klein and L. Spector. Genetic programming with
historically assessed hardness. In R. L. Riolo, T. Soule,
and B. Worzel, editors, Genetic Programming Theory
and Practice VI, Genetic and Evolutionary
Computation, chapter 5, pages 61–75. Springer, 2008.

[24] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[25] R. M. MacCallum. Introducing a perl genetic
programming system: and can meta-evolution solve
the bloat problem? In Genetic Programming,
Proceedings of EuroGP’2003, pages 364–373.
Springer-Verlag, 2003.

[26] R. I. McKay. Fitness sharing in genetic programming.
In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), pages
435–442. Morgan Kaufmann, 2000.

[27] R. Moll. iJava—an online interactive textbook for
elementary java instruction: Demonstration. J.
Comput. Sci. Coll., 26(6):55–57, June 2011.

[28] C. Ofria. private communication, 2016.

[29] A. Robinson and L. Spector. Using genetic
programming with multiple data types and automatic
modularization to evolve decentralized and
coordinated navigation in multi-agent systems. In Late
Breaking Papers at the Genetic and Evolutionary
Computation Conference (GECCO-2002), pages
391–396. AAAI, 2002.

[30] J. Schmidhuber. Evolutionary principles in
self-referential learning. on learning now to learn: The
meta-meta-meta...-hook. Diploma thesis, Technische
Universitat Munchen, Germany, 14 May 1987.

[31] S. Silva and S. Dignum. Extending operator
equalisation: Fitness based self adaptive length
distribution for bloat free GP. In Proceedings of the
12th European Conference on Genetic Programming,
EuroGP 2009, pages 159–170. Springer, 2009.

[32] R. Smith, S. Forrest, and A. S. Perelson. Population

1355

diversity in an immune system model: Implications for
genetic search. In Foundations of Genetic Algorithms
2, pages 153–166. Morgan Kaufmann, 1992.

[33] E. Smorodkina and D. Tauritz. Toward automating ea
configuration: the parent selection stage. In
Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 63–70, Sept 2007.

[34] W. M. Spears. Adapting crossover in evolutionary
algorithms. In Proceedings of the Fourth Annual
Conference on Evolutionary Programming, pages
367–384. MIT Press, 1995.

[35] L. Spector. Autoconstructive evolution: Push,
pushGP, and pushpop. In Proceedings of the Genetic
and Evolutionary Computation Conference
(GECCO-2001), pages 137–146. Morgan Kaufmann,
2001.

[36] L. Spector. Adaptive populations of endogenously
diversifying Pushpop organisms are reliably diverse. In
Proceedings of Artificial Life VIII, the 8th
International Conference on the Simulation and
Synthesis of Living Systems, pages 142–145. The MIT
Press, 2002.

[37] L. Spector. Automatic Quantum Computer
Programming: A Genetic Programming Approach,
volume 7 of Genetic Programming. Kluwer Academic
Publishers, Boston/Dordrecht/New York/London,
June 2004.

[38] L. Spector. Towards practical autoconstructive
evolution: Self-evolution of problem-solving genetic
programming systems. In R. Riolo, T. McConaghy,
and E. Vladislavleva, editors, Genetic Programming
Theory and Practice VIII, volume 8 of Genetic and
Evolutionary Computation, pages 17–33. Springer New
York, 2011.

[39] L. Spector. Assessment of problem modality by
differential performance of lexicase selection in genetic
programming: a preliminary report. In Proceedings of
the fourteenth international conference on Genetic and
evolutionary computation conference companion,
GECCO Companion ’12, pages 401–408, New York,
NY, USA, 2012. ACM.

[40] L. Spector. Clojush: The Push programming language
and the PushGP genetic programming system
implemented in Clojure.
https://github.com/lspector/Clojush, 2016.

[41] L. Spector, K. Harrington, B. Martin, and
T. Helmuth. What’s in an evolved name? the
evolution of modularity via tag-based reference. In
R. Riolo, E. Vladislavleva, and J. H. Moore, editors,
Genetic Programming Theory and Practice IX,
Genetic and Evolutionary Computation, chapter 1,
pages 1–16. Springer, 2011.

[42] L. Spector and T. Helmuth. Uniform linear
transformation with repair and alternation in genetic
programming. In R. Riolo, J. H. Moore, and
M. Kotanchek, editors, Genetic Programming Theory
and Practice XI, Genetic and Evolutionary
Computation, chapter 8, pages 137–153. Springer, 9-11
May 2013.

[43] L. Spector and T. Helmuth. Effective simplification of
evolved push programs using a simple, stochastic
hill-climber. In GECCO Comp ’14: Proceedings of the

2014 conference companion on Genetic and
evolutionary computation companion, pages 147–148.
ACM, 2014.

[44] L. Spector and J. Klein. Trivial geography in genetic
programming. In T. Yu, R. L. Riolo, and B. Worzel,
editors, Genetic Programming Theory and Practice
III, volume 9 of Genetic Programming, chapter 8,
pages 109–123. Springer, 12-14 May 2005.

[45] L. Spector, J. Klein, and M. Keijzer. The push3
execution stack and the evolution of control. In
GECCO 2005: Proceedings of the 2005 conference on
Genetic and evolutionary computation, pages
1689–1696. ACM Press, 2005.

[46] L. Spector, J. Klein, and C. Perry. Tags and the
evolution of cooperation in complex environments. In
Proceedings of the AAAI 2004 Symposium on
Artificial Multiagent Learning. AAAI Press, 2004.

[47] L. Spector, J. Klein, C. Perry, and M. Feinstein.
Emergence of collective behavior in evolving
populations of flying agents. In Genetic and
Evolutionary Computation – GECCO-2003, volume
2723 of LNCS, pages 61–73, Chicago, 12-16 July 2003.
Springer-Verlag.

[48] L. Spector, J. Klein, C. Perry, and M. Feinstein.
Emergence of collective behavior in evolving
populations of flying agents. Genetic Programming
and Evolvable Machines, 6(1):111–125, Mar. 2005.

[49] L. Spector and A. Robinson. Genetic programming
and autoconstructive evolution with the push
programming language. Genetic Programming and
Evolvable Machines, 3(1):7–40, Mar. 2002.

[50] L. Spector and A. Robinson. Multi-type, self-adaptive
genetic programming as an agent creation tool. In
GECCO 2002: Proceedings of the Bird of a Feather
Workshops, Genetic and Evolutionary Computation
Conference, pages 73–80. AAAI, 2002.

[51] J. Tavares, P. Machado, A. Cardoso, F. B. Pereira,
and E. Costa. On the evolution of evolutionary
algorithms. In Genetic Programming 7th European
Conference, EuroGP 2004, Proceedings, pages
389–398. Springer-Verlag, 2004.

[52] F. Vafaee, W. Xiao, P. C. Nelson, and C. Zhou.
Adaptively evolving probabilities of genetic operators.
In Seventh International Conference on Machine
Learning and Applications, ICMLA ’08, pages
292–299. IEEE, 2008.

[53] J. R. Woodward and J. Swan. The automatic
generation of mutation operators for genetic
algorithms. In GECCO 2012 2nd Workshop on
Evolutionary Computation for the Automated Design
of Algorithms, pages 67–74. ACM, 2012.

1356

