
Why Asynchronous Parallel Evolution is the Future of
Hyper-heuristics: A CDCL SAT Solver Case Study

Alex R. Bertels
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
arb9z4@mst.edu

Daniel R. Tauritz
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
dtauritz@acm.org

ABSTRACT
Evolutionary Algorithms (EAs) are inherently parallel due
to their ability to simultaneously evaluate the fitness of in-
dividuals. Synchronous Parallel EAs (SPEAs) leverage this
with the intent to gain significant speed-ups when executed
on multiple processors. However, many important problem
classes lead to large variations in fitness evaluation times,
such as is often the case in hyper-heuristics where the time
complexity of executing one individual may differ greatly
from that of another. Asynchronous Parallel EAs (APEAs)
omit the generational synchronization step of traditional
EAs which work in well-defined cycles. They can provide
scalability improvements proportional to the variation in fit-
ness evaluation times of the evolved individuals, and there-
fore should be considered for use in hyper-heuristics. This
paper provides an empirical analysis of the improvements
obtained by applying APEAs, compared to SPEAs, on a
case study involving the evolution of conflict-driven clause
learning Boolean satisfiability solvers, demonstrating that
APEAs are the future of hyper-heuristics.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming–program modification, program syn-
thesis

Keywords
Hyper-Heuristics, Asynchronous Parallel Evolution, Parallel
Evolutionary Algorithms, Genetic Programming, SAT

1. INTRODUCTION
The computational time needed to evaluate the fitness

of a trial solution in hyper-heuristics for many important
problem classes is characterized by large variations in the
computational time needed to evaluate the fitness of a trial

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931729

solution. One example is when dealing with sampled fitness,
where fitness may for instance be estimated by applying the
trial solution to a set of instances sampled from a problem
domain specific distribution; some instances may take sig-
nificantly more computational time to evaluate than others.
Another example is when the complexity of the genotypes
in a population can significantly vary, such as is often the
case in Genetic Programming (GP), where typically limits
are placed on genotype size (tree depth in Koza style GP)
and larger genotypes are penalized to create parsimony pres-
sure to combat bloat [7, 23]. For example, when comparing
two complex evolved algorithms where the runtime of each
is both dependent on their internal structure as well as the
specific sampled problem instances their fitness is being ap-
proximated on, the variation in computational time is caused
partially by their structural differences (e.g., one algorithm
might have an extra loop nesting) and partially by the in-
stance structure differences (e.g., one instance might require
full computation over the entire instance while another can
be determined with a partial computation).

Hyper-heuristics are a type of meta-heuristic which search
program space for the purpose of automating the design of
algorithms. They typically employ GP and their fitness eval-
uation relies on a sample consisting of multiple test cases [21,
20]. Thus, they can suffer from both the sampled fitness and
the varying genotype complexity causes of fitness evaluation
time variation, which greatly amplifies the time variation.
However, if the variation introduced by the genotype com-
plexity is minuscule in comparison to that presented by the
context in which the generated heuristics are evaluated, then
the time variation may be bounded by the given application.

Consider evolving heuristics in conflict-driven clause learn-
ing (CDCL) Boolean satisfiablity (SAT) solvers to target
specific problem classes. Encoding a specific problem class in
SAT creates a class of structured logical expressions, called
SAT instances. The variable interactions or associations in
each instance in a class define a distinct structure. Effi-
ciently solving instances in a specific class requires finding
the solver and parameter configuration that perform best for
that class.

As CDCL SAT solvers attempt to find a solution to an in-
stance or prove that the instance is unsatisfiable, the solver
must make decisions for the assignment of Boolean variables
in the logical expression. A function – labelled as the vari-
able scoring heuristic – assists in determining which vari-
ables are selected as decision variables. Better variable se-
lections often equate to fewer decisions and shorter solving

1359

times. The variable scoring heuristic can be represented in
GP and requires evaluating against a sample set of SAT
instances. Thus, the evaluation times can vary drastically
with the difficulty of the datasets, the sample size, and the
quality of the heuristic. Additionally, these factors can also
result in lengthy evolution times.

Given a distributed computing resource, such as a multi-
core machine, or a parallel cluster, Evolutionary Algorithms
(EAs) are often able to reduce overall runtime by distribut-
ing individuals in the population to be evaluated concur-
rently. Synchronous Parallel EAs (SPEAs) maintain the
generational step that is typical to most EAs; however, this
approach suffers from idle CPU cycles when the fitness eval-
uation times vary. Asynchronous Parallel EAs (APEAs)
eliminate this wasted time by producing offspring as slave
nodes in the distributed computing resource become idle.
This paper empirically studies the relative performance of
APEAs versus SPEAs on global populations of CDCL SAT
solver variable scoring heuristics, as opposed to distributed
populations such as in island-model or diffusion EAs [2]. The
rest of the paper is organized as follows. Section 2 reviews
related work on Parallel Evolutionary Algorithms (PEAs)
and evolving heuristics for SAT solvers. Section 3 illustrates
the structure of the hyper-heuristic and its mechanics. This
is followed by a description of the experimental setup in
Section 4 and results in Section 5. Lastly, the conclusions
and future work are discussed in Section 6 and Section 7,
respectively.

2. RELATED WORK

2.1 Parallel Evolutionary Algorithms
Populations within a PEA can either be structured as a

single, centralized population or as multiple decentralized
subpopulations [24]. Distributing subpopulations over avail-
able machines achieves near-linear scalability, with the sole
overhead due to inter-population communication through
interchange of select individuals at typically fixed time in-
tervals called epochs. This allows for each subpopulation
to evolve semi-independently, while slowly diffusing genetic
material throughout all populations. Alba et al. [1, 2, 3] have
reported on the effectiveness of various behaviors, particu-
larly distributed and cellular reproduction, in distributed
PEAs.

Durillo et al. [9] have shown empirical evidence support-
ing the significant improvement in terms of various qual-
ity metrics when employing APEAs rather than SPEAs for
NSGA-II. The APEA master process creates and sends indi-
viduals to be evaluated as the slave processors become idle.
In the generational version, the population is replaced when
enough offspring have been generated. With the steady-
state alternative, the offspring are considered as each is re-
ceived. The researchers employed homogeneous populations
as the test cases during experimentation. While these re-
sults still apply to heterogeneous populations, an in-depth
runtime analysis should be completed to measure perfor-
mance.

Those that have specifically addressed heterogeneous pop-
ulations, note that APEAs are biased toward individuals
with shorter evaluation times [8, 29, 30]. This is a result
of the master process receiving those individuals sooner and
more often, flooding the population. This potentially re-
duces the search space that can be reached within the run-

time. Yagoubi and Schoenauer [29] attempted to circum-
vent this with a duration-based selection on the received
offspring. This supposed defect can be taken advantage of
in various situations, one of which is evolving genetic pro-
grams, which must use a mechanism such as parsimony pres-
sure or must minimize a size-related objective value to pre-
vent any individual from becoming too large. If the size
of the individual is proportionate to the evaluation time,
then the bias provided by heterogeneous evaluation times
can be used to produce an implicit parsimony pressure [28,
19]. This characteristic may not necessarily be present in
some hyper-heuristics if the size of the genotype has little
effect on the evaluation time, as is noted in the present ap-
plication.

2.2 SAT Solving
Recent work has automatically optimized SAT solver pa-

rameter configuration to target specific classes of structured
instances [17, 16, 12], and other work automatically evolved
variable selection techniques for stochastic local search (SLS)
solvers [4, 18, 13, 14, 15]. However, CDCL solvers are still
the most efficient SAT solvers. As a deterministic alter-
native to SLS solvers, CDCL SAT solvers construct rea-
son clauses to learn from conflicting variable assignments
throughout the search. Although Biere and Fröhlich [6,
5] have demonstrated that restart and variable selection
schemes drastically impact CDCL solver efficiency for spe-
cific problem classes, we know of no work that automati-
cally evolves CDCL heuristics. We believe that appropriate
CDCL operations will increase the effectiveness of a CDCL
SAT solver in targeting classes of instances with unique
structure.

We take the next step by applying hyper-heuristics to gen-
erate CDCL SAT solvers tailored for an arbitrary, but par-
ticular, problem class. As is typical, our hyper-heuristic –
named ADSSEC (Automated Design of SAT Solvers em-
ploying Evolutionary Computation) – employs GP to auto-
matically reorganize and manipulate the algorithmic prim-
itives constituting the variable scoring heuristic [20, 22].
These primitives can be as general as state-related variables
and binary operations or as specific as carefully constructed
functions with tunable inputs. The primitives employed are
more granular than statements in source code and are there-
fore much more versatile in developing new solver compo-
nents than the line substitution approach proposed by Petke
et al. designed to optimize entire SAT solvers [26, 25].

3. EVOLUTIONARY APPROACH
Influenced by the success of Fukunaga [13] in improving

SLS runtimes by evolving specific heuristics, we use GP
to evolve variable scoring heuristics to automatically tar-
get CDCL solvers to specific classes of structured instances.
In particular, we use Koza-style GP [27] as it is well suited
to representing the parse trees of variable scoring heuris-
tics. ADSSEC creates an initial population of variable scor-
ing heuristics and evolves the population through mutation
and recombination. ADSSEC evaluates these heuristics by
replacing the variable selection heuristic in MiniSat [10], a
commonly used efficient and deterministic CDCL solver with
dense source code. While ADSSEC employs a standard par-
ent selection before producing offspring, we constructed a
survival selection specifically for the APEA. ADSSEC re-

1360

turns the heuristics from the final population after reaching
the termination criteria.

3.1 Heuristic Representation
Mapping variable scoring heuristic functions to objects

easily manipulated in a GP is fairly straight-forward. We
represent each scoring heuristic as a parse tree where non-
terminal nodes are operators and terminal nodes are state-
related values (see below).
Derived from currently implemented variable scoring heuris-
tics [6], ADSSEC defines the following terminal nodes:

• Score (s): The previous score of the variable.

• Conflict count (i): The current number of conflicts
encountered. Also called the conflict index.

• Variable Decay (f): Initially used as the rate of vari-
able score decay in MiniSat. Now f is just used to
derive the Variable Increment value (MiniSat Default:
0.95).

• Variable Increment (g = (1/f)i): The amount MiniSat
increases a variable’s score.

• Constant (C): A constant value in {1, 2, 3, . . . , 10} ∪
{0.0, 0.1, 0.2, . . . , 0.9}.

• Special Component (H): Derived from the Chaff CDCL
SAT solver for scaling variable scores [6].

hm
i =

{
0.5 · s if m divides i evenly

s otherwise
(1)

where m is a power of 2: {2, 4, 8, . . . , 1024}.

ADSSEC defines the following non-terminal (binary) op-
erator nodes: Addition (+), Subtraction (−), Multiplication
(∗), and Division (/). These arithmetic operators may be ap-
plied because all the terminal nodes relate to either integer
or floating-point values.

Again, ADSSEC evolves the parse tree genetic encodings.
To evaluate each variable scoring heuristic, we convert the
parse tree into a C++ statement. We replace the origi-
nal variable scoring heuristic in a pre-built MiniSat 2.2 by
compiling and linking in the new variable scoring heuris-
tic (C++ statement). We execute the resulting solver on
test instances to evaluate the effectiveness of the heuristic.
This method allows us to take advantage of MiniSat and the
performance derived from being implemented in C++ while
reducing development time.

3.2 Objective
The objective score represents how well an evolved version

of MiniSat performs on a provided training set of instances.
The true objective score is a function (e.g., average) over all
instances in the problem class being targeted. However, as
it is infeasible to compute over a potentially infinite set of
instances, instead a small sampling of instances provides an
approximation as is discussed later. Determining the best
performance measure to use in ADSSEC is difficult. Tra-
ditionally we aim to reduce the runtime needed to either
find a solution or prove unsatisfiability. However, because
ADSSEC evaluates several instances in parallel on the same
hardware, runtimes for individual instances are inconsistent

even with a deterministic solver. Therefore, instead of run-
time, we use the number of variable decisions as a consistent
metric. The number of decisions serves as an approximation
of the number of steps needed to solve an instance and is
not affected by the load of the machine the solver is exe-
cuted on. Fewer decisions should indicate fewer steps and,
subsequently, lower runtimes; an improved variable scoring
heuristic should reduce this value. Our per-instance sub-
score for an evolved variant is the ratio of the number of
decisions needed by the variant to that needed by the origi-
nal selection scheme.

The objective score is then simply the average of all the
instance sub-scores. Given that all the sub-scores are ex-
pressed relative to the original MiniSat, any evolved indi-
vidual that performs identically to MiniSat’s variable scoring
heuristic will end up with an objective score of 1.0. Lower
scores indicate better schemes.

Occasionally, the EA will construct inadequate heuristics
that cause the solver to require an inordinate number of
decisions to reach a conclusion. We define limiting func-
tions to prevent wasting evaluation time on such heuristics.
ADSSEC relies on default MiniSat’s performance to approx-
imate reasonable limits for any given SAT instance. Initially,
ADSSEC limits an evolved MiniSat to three times the num-
ber of decisions the original MiniSat needed to solve that
instance. While the multiplier of three is user-configurable,
manual tuning indicated that this limit was fairly gener-
ous without wasting an excessive amount of evaluation time.
These generous limits are required to collect decent heuris-
tics in the population – decent heuristics provide complex
genetic material for later optimization; they do not time
out on all tested instances, but are generally worse than the
original MiniSat. However, as ADSSEC progresses through
the evolutionary process, our interest shifts to exploiting
the heuristics that are strictly better than the original. As
such, the decision limit linearly decreases down to the ex-
act number of decisions MiniSat needed for a specific in-
stance or the average number of decisions for the sample
set. For example, if ADSSEC is to complete 5000 evalua-
tions throughout the run and the decision limit multiplier
decreases from 3.0 to 1.0, then the multiplier is decremented
by ((3.0− 1.0)/5000 = 0.0004 after each evaluation.

Ideally an accurate objective score would be determined
by executing the evolved variable scoring heuristic against
the entire dataset of interest. Because this is generally too
costly, ADSSEC utilizes strike-based sampling to gauge the
effectiveness of a MiniSat variant. ADSSEC randomly se-
lects a user-defined number of instances from the given train-
ing set to evaluate a variant. At the start of evolution, the
population contains mostly low-quality heuristics and evalu-
ating these heuristics against difficult instances wastes eval-
uation time. As such, a bias is placed in favor of selecting
easier instances in early evolution. This bias linearly trans-
forms to a uniform selection at the end of the evolutionary
process. For each instance in this selection, ADSSEC ex-
ecutes the evolved variant and assigns a sub-score ratio as
described before. If that variant reaches the decision limit
for that instance, then the variant receives a strike and a
sub-score of the current decision-limit multiplier. If a vari-
ant reaches a user-defined number of strikes during evalua-
tion, then the sub-scores for the remaining instances in the
sample are assigned the current decision-limit multiplier.

1361

3.3 Evolutionary Algorithm

3.3.1 Population Initialization
To create each individual in the initial population of vari-

able scoring heuristics, ADSSEC randomly generates a parse
tree from the primitives, or nodes, described previously (see
Sect. 3.1). First, as experimentation shows that no single
terminal node produces an effective scoring scheme, ADSSEC
assigns a random operator node to the root of the tree.
ADSSEC then assigns two random nodes to the left and
right branches of the operator node. There is a 50% chance
that each node will be terminal (versus non-terminal). If
the node is non-terminal, then ADSSEC repeats the process
and assigns a random operator node. If the node is termi-
nal, then there is a 50% chance that the node will be the
previously assigned score, s; if not s, ADSSEC randomly as-
signs one of the other terminal node options. We introduced
this bias because most current schemes appear to rely on the
previous variable score. We manually tuned the maximum
depth of a tree generated for the initial population to eight.
Smaller depths contained much less genetic diversity, while
larger trees produced complex heuristics that rarely solved
instances in the decision limits.

3.3.2 Parent Selection and Variation Operators
ADSSEC uses one of two methods to develop a single off-

spring (variant): mutation or recombination. For mutation,
ADSSEC simply randomly selects a subtree in a random
individual’s parse tree and replaces it with a new branch
generated using the rules established in Population Initial-
ization (Sect. 3.3.1) – without a depth limitation. Typically,
APEAs mitigate tree growth by promoting an implicit par-
simony pressure. This is under the assumption that smaller
trees have shorter evaluation times and return to the popula-
tion sooner. However, the strike-based sampling terminated
bad heuristics quickly, which partially eliminated the im-
plicit pressure. Fortunately, most overly-complicated heuris-
tics receive poor objective scores and are removed during
survival selection. For recombination, ADSSEC implements
a sub-tree crossover: the system randomly selects two in-
dividuals in the population and replaces a random branch
from the first parent with a random branch from the second
parent. Again, this procedure only produces a single child.

3.3.3 Survival Selection
The survival selection chooses which individuals in the

population continue into the next generation. In ADSSEC,
we want to encourage genetically diverse selection so that
smaller parse trees (which are generated more easily) do not
flood the population. Certain small heuristics have adequate
performance and, had one been discovered early on in evolu-
tion, could be spread throughout the population if diversity
was not maintained.

Crowding functions are selection functions that excel at
promoting genetic diversity in the population [11]. In a de-
terministic crowding function, an offspring competes with its
closest parent, either replacing the parent or being dropped
from the population in favor of the parent. In an APEA,
however, generations are not clearly delineated and a parent
can have multiple offspring being evaluated simultaneously.
We developed an asynchronous crowding function that al-
lows offspring to compete with either their parents or any
‘siblings’ – or potentially descendants of siblings – that re-

placed the parents. We use a computationally cheap dis-
tance function comparing histograms of node types (e.g.,
addition, constant, conflicts, etc.) to determine the closest
remaining relative in the current population. To provide a
fair comparison between the models, the SPEA version of
ADSSEC employs the same crowding selection method.

Parents have to be uniformly selected at random to en-
sure that each individual has an equal chance of providing
genetic material to the pool. Additionally, uniform selec-
tion allows an equal chance of producing offspring, which
can eliminate less fit parents from the population with the
employed survival selection.

3.3.4 Termination
ADSSEC terminates the evolutionary cycle after complet-

ing a user-defined number of evaluations. However, through-
out the run individuals may be replaced by randomly gen-
erated parse trees if the population has become stale or has
converged. If the best individual has not been improved in
a user-defined number of evaluations, ADSSEC introduces
new material to the gene pool. Currently, we replace all
variants whose performance is worse than that of the orig-
inal MiniSat. This mechanism is useful in restarting the
exploration of the variable scoring heuristics search space.

4. EXPERIMENTATION
Ideally, we want to construct entire solvers for a given

problem, and ADSSEC demonstrates the obstacles and, more
importantly, the potential of adapting a single component
of a CDCL solver. Our experiments with the prototype
ADSSEC system require datasets that have:

• instances that ADSSEC can feasibly train on in a short
period of time (each instance should require at most a
few seconds for the original MiniSat to solve)

• enough instances to sufficiently represent a distinct in-
stance class for both training and testing

• instances that are difficult enough that the instance
can benefit from a fitted heuristic

Unfortunately, these requirements make many of the usual
SAT datasets inappropriate for our initial prototype exper-
iments. Instances from previous SAT competitions attempt
to challenge the capabilities of the solvers, so many require
too significant an amount of time to solve. Many publicly
available datasets contain too few instances to sufficiently
represent the distinct problem class or the instances are so
simple that nothing is gained by creating a fitted heuristic.
We chose to generate datasets for ADSSEC as generators
provide us with enough control to meet these criteria while
keeping us from presenting bias by hand-selecting specific
instances.

We used a modularity-based generator developed by Jesús
Giráldez Cru1 to create 80 instances for the datasets. These
instances simulate an underlying structure that may be found
in a class of instances from industry. The generator allows
the user to specify the structure of each instance; we gener-
ated instances that encapsulated 90 modularity communities
– as defined within the context of the tool – and 3 literals per
clause. Half of the instances were configured with a mod-
ularity of 0.85 and the other 40 with 0.9. We used seeds 1

1http://www.iiia.csic.es/˜jgiraldez/

1362

Table 1: ADSSEC EA parameter settings

Population Offspring Mutation Crossover Termination Restart Dec. Limit Sample
(µ) (λ) Rate Rate Evaluations Evaluations Multiplier Size
20 20 0.10 0.90 1000 100 3.0 → 1.0 15 (5 strikes)

(a) Dataset A
(Mean: 7,441 Decisions)

(Std Dev.: 11,798 Decisions)

(b) Dataset B
(Mean: 99,313 Decisions)

(Std Dev.: 118,761 Decisions)

(c) Dataset C
(Mean: 297,925 Decisions)

(Std Dev.: 309,996 Decisions)

(d) Dataset D
(Mean: 522,668 Decisions)

(Std Dev.: 565,955 Decisions)

Figure 1: Boxplots of evolution time relative to the mean of the evolution time for the asynchronous runs on each respective
dataset. The average relative asynchronous evolution time will always be at 1.0 for each plot. The average and standard

deviation of the decisions needed by MiniSat to solve the instances used in each dataset describe the difficulty and variation
that can be expected to influence evaluation times.

through 40 for both halves. Each instance contained 5000
variables in 19000 clauses. A majority of the instances were
satisfiable while 32 were unsatisfiable. We trained ADSSEC
on select subsets of 32 instances where the sample size was
15 allowing up to 5 strikes per evaluation. To obtain the
subsets, we first sorted the 80 instances by the number of
decisions default MiniSat needed to solve each. Then, the
instances were divided into five groups of sixteen instances,
where Group 0 needed the least number of decisions and
Group 4 needed the most decisions. The final subsets used
for training were constructed as follows:

Dataset A Combined Group 0 and Group 1

Dataset B Combined Group 0 and Group 2

Dataset C Combined Group 0 and Group 3

Dataset D Combined Group 0 and Group 4

Dataset A has the least variation in evaluation time and
Dataset D has the most. Some instances can be solved in
less than a thousandth of a second while the longer ones can
take several seconds.

The computationally extensive search made automated
tuning of ADSSEC’s parameters infeasible; thus, we used
manual tuning to discover the configuration enumerated in
Table 1. ADSSEC created an initial population of 20 ran-
dom individuals. The master process used 20 slaves pro-
cesses for evaluating offspring, either synchronously produc-
ing offspring at each generation or asynchronously creating
new offspring as each node became available.

ADSSEC selected parents uniformly for either recombi-
nation or mutation – with a mutation probability of 0.10
and, subsequently, a recombination rate of 0.90 – and used
a shared crowding method for survival selection. ADSSEC
was configured to terminate after 1000 evaluations and restart
after 100 evaluations without improvement.

We executed ADSSEC on a machine with dual Intel Xeon
E5-2630 v3 2.4 GHz octa-core processors and 128 GB 2133
MHz DDR4 RDIMM ECC RAM running Ubuntu 14.04.
Both the synchronous and asynchronous models were run
8 times on Datasets A, B, C, and D.

5. RESULTS AND DISCUSSION
The total user time across all processes was measured from

each run of ADSSEC for both the synchronous model and
asynchronous model on the datasets. The variance in the
number of decisions needed to solve the instances in each
dataset directly influences the variation in evaluation time
for each heuristic. Increased variation in evaluation times
allows for greater speed-ups in the asynchronous model over
the synchronous approach. As illustrated in Figure 1, the
growth in variance of MiniSat decisions in each dataset re-
sults in more evident speed-ups for the asynchronous evo-
lution times. Additionally, there may be a proportional in-
crease in variation of evolution time for both models.

The results from ANOVA tests confirm the improvement
provided by the asynchronous method (see Table 2); as the
p-values are all approximately zero, there is very high con-
fidence in this conclusion. In Dataset D, the synchronous
method needed an average of 5.24 hours to complete the

1363

same number of evaluations that asynchronous finished in
an average of 3.19 hours. These results were obtained where
the longest time to solve an instance is approximately five
seconds. In the real-world, industrial instances can require
several minutes to hours to complete. Employing the asyn-
chronous evolution when training ADSSEC on datasets con-
taining those instances would measure speed-ups in CPU
days or weeks.

Table 2: ANOVA results of evolution time in seconds
comparing both models of ADSSEC. (The variance is

measured in seconds2.)

Synchronous Asynchronous
Dataset A

Mean 515.1038 435.1900
Variance 35.4130 33.4400
P-value 0.0000

Dataset B
Mean 1,647.6300 1,198.9300
Variance 11,554.0380 1,455.4835
P-value 0.0000

Dataset C
Mean 15,453.0900 9,260.6925
Variance 493,279.9961 112,446.0049
P-value 0.0000

Dataset D
Mean 18,865.0775 11,470.6363
Variance 3,539,070.1957 230,474.1322
P-value 0.0000

6. CONCLUSION
For EAs where the fitness evaluation times can vary dras-

tically, especially in the case of hyper-heuristics, just par-
allelizing the evaluations to minimize evolution time is not
always sufficient. The asynchronous approach to modelling
hyper-heuristics will certainly provide a significant speed-up
in evolution time over the synchronous alternative. As the
variation in evaluation time increases, so does the speed-
up. Instances from the SAT competitions and within indus-
trial problem classes often have large variations in solving
times. The asynchronous approach is necessary for address-
ing training systems similar to ADSSEC on the industrial
instances. This paper has provided empirical evidence of
the substantial performance gains of the asynchronous ap-
proach demonstrating that APEAs are the future of hyper-
heuristics.

7. FUTURE WORK
• Measuring the rate of convergence between the models

may conclude whether asynchronous or synchronous
approaches produce superior heuristics in less time.
While asynchronous evolution completed the same num-
ber of evaluations in less time, more evidence is needed
to conclude that the quality of heuristics produced will
match the synchronous counterpart at any set number
of evaluations.

• Use either different datasets or larger sample sizes to
determine how the generated heuristic quality varies
with the training instances.

• While hyper-heuristics can be computationally expen-
sive, providing some level of automated parameter tun-
ing may further reduce the evolution time. This is de-
pendent on the sensitivity of the parameters or inputs
selected for automation.

• Comparing ADSSEC to parameter optimization tools,
such as those mentioned in the related work section,
applied to CDCL SAT solvers may determine the ben-
efits and limitations of this asynchronous approach for
different datasets. Additionally, incorporating param-
eter optimization as a post-processing step or even
throughout evolution may develop more targeted CDCL
SAT solvers.

8. REFERENCES
[1] E. Alba. Parallel evolutionary algorithms can achieve

super-linear performance. Information Processing
Letters, 82(1):7–13, 2002.

[2] E. Alba and M. Tomassini. Parallelism and
Evolutionary Algorithms. IEEE Transactions on
Evolutionary Computation, 6(5):443–462, 2002.

[3] E. Alba and J. M. Troya. Analyzing Synchronous and
Asynchronous Parallel Distributed Genetic
Algorithms. Future Generation Computer Systems,
17(4):451–465, 2001.

[4] M. Bader-El-Den and R. Poli. Generating SAT
Local-Search Heuristics Using a GP Hyper-Heuristic
Framework. In Artificial Evolution, volume 4926 of
Lecture Notes in Computer Science, pages 37–49,
Tours, France, Oct. 2008. Springer Berlin Heidelberg.

[5] A. Biere and A. Fröhlich. Evaluating CDCL Restart
Schemes. In Proceedings of the International
Workshop on Pragmatics of SAT (POS’15), Austin,
TX, Sept. 2015. 16 pages.

[6] A. Biere and A. Fröhlich. Evaluating CDCL Variable
Scoring Schemes. In Theory and Applications of
Satisfiability Testing–SAT 2015, volume 9340 of
Lecture Notes in Computer Science, pages 405–422.
Springer International Publishing, Austin, TX, USA,
Sept. 2015.

[7] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler.
Multiobjective Genetic Programming: Reducing Bloat
Using SPEA2. In Proceedings of the 2001 Congress on
Evolutionary Computation, volume 1, pages 536–543.
IEEE, 2001.

[8] A. W. Churchill, P. Husbands, and A. Philippides.
Tool Sequence Optimization using Synchronous and
Asynchronous Parallel Multi-Objective Evolutionary
Algorithms with Heterogeneous Evaluations. In 2013
IEEE Congress on Evolutionary Computation (CEC),
pages 2924–2931. IEEE, 2013.

[9] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba. A
Study of Master-Slave Approaches to Parallelize
NSGA-II. In IEEE International Symposium on
Parallel and Distributed Processing, pages 1–8. IEEE,
2008.

[10] N. Eén and N. Sörensson. An Extensible SAT-solver.
In Theory and Applications of Satisfiability
Testing–SAT 2003, volume 2919 of Lecture Notes in
Computer Science, pages 502–518, Santa Margherita
Ligure, Italy, May 2003. Springer Berlin Heidelberg.

1364

[11] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing. Springer, second edition,
2015. page 93.

[12] S. Falkner, M. Lindauer, and F. Hutter. SpySMAC:
Automated Configuration and Performance Analysis
of SAT Solvers. In Theory and Applications of
Satisfiability Testing–SAT 2015, volume 9340 of
Lecture Notes in Computer Science, pages 215–222.
Springer International Publishing, Austin, TX, USA,
Sept. 2015.

[13] A. S. Fukunaga. Evolving Local Search Heuristics for
SAT Using Genetic Programming. In Genetic and
Evolutionary Computation Conference–GECCO 2004,
volume 3103 of Lecture Notes in Computer Science,
pages 483–494, Seattle, WA, USA, June 2004.
Springer Berlin Heidelberg.

[14] A. S. Fukunaga. Automated Discovery of Local Search
Heuristics for Satisfiability Testing. Evolutionary
Computation, 16(1):31–61, Apr. 2008.

[15] A. S. Fukunaga. Massively Parallel Evolution of SAT
Heuristics. In 2009 IEEE Congress on Evolutionary
Computation (CEC), pages 1478–1485, Trondheim,
Norway, May 2009. IEEE.

[16] F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Sequential model-based optimization for general
algorithm configuration. In Learning and Intelligent
Optimization, volume 6683 of Lecture Notes in
Computer Science, pages 507–523. Springer Berlin
Heidelberg, Rome, Italy, Jan. 2011.

[17] F. Hutter, H. H. Hoos, K. Leyton-Brown, and
T. Stützle. ParamILS: An Automatic Algorithm
Configuration Framework. Journal of Artificial
Intelligence Research, 36(1):267–306, Sept. 2009.

[18] R. H. Kibria and Y. Li. Optimizing the Initialization
of Dynamic Decision Heuristics in DPLL SAT Solvers
Using Genetic Programming. In Genetic
Programming, volume 3905 of Lecture Notes in
Computer Science, pages 331–340. Springer Berlin
Heidelberg, Budapest, Hungary, Apr. 2006.

[19] M. A. Martin, A. R. Bertels, and D. R. Tauritz.
Asynchronous Parallel Evolutionary Algorithms:
Leveraging Heterogeneous Fitness Evaluation Times
for Scalability and Elitist Parsimony Pressure. In
Proceedings of the 17th Annual Conference Companion
on Genetic and Evolutionary Computation (GECCO
’15), pages 1429–1430, Madrid, Spain, July 2015.
ACM.

[20] M. A. Martin and D. R. Tauritz. A Problem
Configuration Study of the Robustness of a Black-Box
Search Algorithm Hyper-Heuristic. In Proceedings of
the 16th Annual Conference on Genetic and

Evolutionary Computation (GECCO ’14), pages
1389–1396. ACM, 2014.

[21] M. A. Martin and D. R. Tauritz. Multi-Sample
Evolution of Robust Black-Box Search Algorithms. In
Proceedings of the 16th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’14), pages
195–196. ACM, 2014.

[22] M. A. Martin and D. R. Tauritz. Hyper-Heuristics: A
Study On Increasing Primitive-Space. In Proceedings
of the 17th Annual Conference Companion on Genetic

and Evolutionary Computation (GECCO ’15), pages
1051–1058, Madrid, Spain, July 2015. ACM.

[23] J. Miller. What bloat? Cartesian Genetic
Programming on Boolean problems. In 2001 Genetic
and Evolutionary Computation Conference Late
Breaking Papers, pages 295–302, 2001.

[24] M. Oussaidene, B. Chopard, O. V. Pictet, and
M. Tomassini. Parallel Genetic Programming and its
application to trading model induction. Parallel
Computing, 23(8):1183–1198, 1997.

[25] J. Petke, M. Harman, W. B. Langdon, and
W. Weimer. Using Genetic Improvement and Code
Transplants to Specialise a C++ Program to a
Problem Class. In Genetic Programming, volume 8599
of Lecture Notes in Computer Science, pages 137–149.
Springer Berlin Heidelberg, Granada, Spain, Apr.
2014.

[26] J. Petke, W. B. Langdon, and M. Harman. Applying
Genetic Improvement to MiniSAT. In Search Based
Software Engineering, volume 8084 of Lecture Notes in
Computer Science, pages 257–262. Springer Berlin
Heidelberg, St. Petersburg, Russia, Aug. 2013.

[27] R. Poli, W. B. Langdon, N. F. McPhee, and J. R.
Koza. A Field Guide to Genetic Programming. Lulu
Enterprises, UK Ltd, Mar. 2008.

[28] E. O. Scott and K. A. De Jong. Evaluation-Time Bias
in Asynchronous Evolutionary Algorithms. In
Proceedings of the 17th Annual Conference Companion
on Genetic and Evolutionary Computation (GECCO
’15), pages 1209–1212, Madrid, Spain, July 2015.
ACM.

[29] M. Yagoubi and M. Schoenauer. Asynchronous
Master/Slave MOEAs and Heterogeneous Evaluation
Costs. In Proceedings of the 14th Annual Conference
on Genetic and Evolutionary Computation Conference
(GECCO ’12), pages 1007–1014. ACM, 2012.

[30] M. Yagoubi, L. Thobois, and M. Schoenauer.
Asynchronous Evolutionary Multi-Objective
Algorithms with Heterogeneous Evaluation Costs. In
2011 IEEE Congress on Evolutionary Computation
(CEC), pages 21–28. IEEE, 2011.

1365

