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ABSTRACT
Parkinson’s disease (PD) is a chronic neurodegenerative con-
dition. Traditionally categorised as a movement disorder,
nowadays it is recognised that PD can also lead to significant
cognitive dysfunction including, in many cases, full-blown
dementia. Due to the wide range of symptoms, including
significant overlap with other neurodegenerative conditions,
both diagnosis and prognosis remain challenging. In this
paper, we describe our use of a multi-objective evolutionary
algorithm to explore trade-offs between polynomial regres-
sion models that predict different clinical measures, with the
aim of identifying features that are most indicative of motor
and cognitive PD variants. Our initial results are promising,
showing that polynomial regression models are able to pre-
dict clinical measures with good accuracy, and that suitable
predictive features can be identified.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.5.2 [Pattern Recognition]: De-
sign Methodology; I.5.4 [Pattern Recognition]: Applica-
tions—Signal processing ; J.3 [Computer Applications]:
Life and Medical Sciences
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1. INTRODUCTION
Parkinson’s disease (PD) is a chronic progressive neurode-

generative disease with a high incidence. Though it mostly
affects the elderly, it also occurs in younger people. The dis-
ease leads to neural cell death, and affects various regions of
the brain. Notably, loss of dopamine-producing neurons in
the substantia nigra region of the brain results in movement
disorders such as tremor, slowing of movement, and unsta-
ble gait. However, it is increasingly recognised that cognitive
dysfunction is also prevalent, and this is an important focus
of contemporary research [4, 19]. Where cognitive dysfunc-
tion precedes the movement disorder, PD is often known
as Lewy Body Dementia (LBD). When it appears later, it
is often referred to as Parkinson’s with Dementia (PDD).
Cases with milder symptoms are known as PD with Mild
Cognitive Impairment (PD-MCI). However, these labels do
not necessarily reflect differences in the disease process, and
are not necessarily exhaustive; it is likely that the true dis-
ease ontology is more complex, with PD comprising a group
of diseases with overlapping cognitive and motor symptoms
[1].

Previous work with evolutionary algorithms has focused
on their use as predictive modelling techniques to diagnose
whether a patient has PD. This approach has been success-
ful, with individual evolved classifiers obtaining test set ac-
curacies in excess of 90% in one study when predicting the
presence of PD from time series recordings of a subject’s
movements [17]. By analysing evolved classifiers, it is also
possible to obtain insight into the motor symptoms that are
most indicative of PD, thereby informing clinical diagnosis
more generally [16].

In this work, by comparison, we are looking at how multi-
objective evolutionary algorithms (MOEAs) can help us to
better understand PD ontologies. Rather than focussing
on a single predictive model, MOEAs allow us to explore a
space of predictive models that make different trade-offs. In
this paper, we focus on the trade-off between models that
predict motor and cognitive elements of PD, and how this
might guide clinical practice when diagnosing and prognos-
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ing different PD variants. In particular, we describe how
a MOEA is used to optimise a Pareto front of polynomial
regression models that aim to predict motor and cognitive
scores using the best subset of features extracted from clini-
cal assessment figures drawn by patients with different vari-
ants of PD.

2. RELATED WORK
Over the past decade, there has been a steady increase in

the study of cognitive decline in PD [4]. A number of these
studies have considered the utility of biomarkers in predict-
ing the onset of both dementia and milder symptoms, iden-
tifying a range of different motor and non-motor symptoms,
brain imaging features, and biochemical markers that have
predictive power [11, 18]. A smaller number of studies have
considered the predictive strength of multiple markers [7].
However, to our knowledge there have not been any pre-
vious applications of data mining and predictive modelling
techniques to cognitive facets of PD.

By comparison, there have been numerous studies of the
use of predictive modelling in the diagnosis of Parkinson’s
disease more generally. Many of these focus on a set of
speech recordings available from the UCI machine learn-
ing repository [15]. Other studies, particularly work using
evolutionary algorithms, have involved collection of clinical
data in collaboration with neurologists [17]. Within this
context, a significant issue with many predictive modelling
techniques, and particularly those involving computational
intelligence methods, is their interpretability. Some work
has been done to address this [16].

In this work we evolve polynomial regression models to
predict clinical measures. This is both to improve inter-
pretability and to make our results more accessible to clin-
icians, who are unlikely to be familiar with more complex
models such as the GP expression trees we used in previous
work. There has been past work on hybridising polynomial
regression and evolutionary algorithms, including [3] where
the EA is used to evolve the model’s coefficients, and [14]
where the authors also use a multi-objective approach.

We use data from a clinical study in which subjects trace
an image of a pentagon spiral (see Section 3.1). There has
been some previous work in applying evolutionary compu-
tation techniques to pentagon spiral images [21]. Notable
differences in the current work are a much larger data set,
the extraction of clinically relevant features, the use of rel-
atively simple, interpretable predictive models, a focus on
regression rather than classification, and the use of MOEAs.

The use of MOEAs to explore trade-offs between objec-
tives is a well-trodden path. However, there has been rel-
atively little work on extracting more general insights by
studying the evolved populations of MOEAs. A prominent
example is the work of Deb et al. [6], who describe how
analysis of MOEA populations can be used to understand
broader design principles regarding decision variables and
objectives.

3. MATERIALS AND METHODS

3.1 Clinical Data
Data collection took place at the Leeds Teaching Hospi-

tals NHS Trust1. Fifty-eight patients and twenty-nine age-

1Permission to use this data was granted by the South Cen-

matched controls were recruited and underwent standard
clinical assessments of their motor and cognitive abilities.
The main exclusion criteria for controls were drug-induced
parkinsonism, multisystem atrophy syndromes, Alzheimer’s
disease, vascular dementia and combined degenerative and
vascular dementias, and significant impairment of upper limb
function or visual acuity.

In this paper, we use composite scores from the MoCA
(Montreal Cognitive Assessment), a cognitive screening test
that has previously been used to assess cognitive impairment
in PD [5], and from the motor section of the MDS-UPDRS
(Movement Disorder Society sponsored revision of the Uni-
fied Parkinson’s Disease Rating Scale) assessment. MoCA
scores are between 0 and 30, with a value below 26 indi-
cating impaired cognitive function. UPDRS motor scores
are between 0 and 132, based on values between 0 (normal)
and 4 (severe) over 33 measures. Amongst the PD patients,
22 were assessed as having PD with normal cognition, 26
had PD-MCI, and 10 had PDD. Of the 29 controls, 19 had
normal cognition, and 10 had impaired cognition.

Following these standard assessments, the subjects were
asked to carry out a series of figure drawing tasks, which are
designed to identify particular motor and cognitive impair-
ments. In this paper, we analyse data from a single drawing
task which required the subject to trace, using an inking
pen, a pentagon spiral figure (see Figure 1) that was over-
laid on a Wacom digitising tablet. The subjects’ movements
were collected as a time series of pen locations within the
tablet’s frame of reference, sampled 200 times per second,
allowing velocity and acceleration time series to be readily
generated. Information about pen pressure and inclination
was also recorded at each time step.

Pentagon spiral tracing is a relatively simple drawing task,
yet it is able to highlight both motor and cognitive dysfunc-
tion. In particular, it requires the subject to repeatedly
speed up and slow down, then change direction. This can
highlight both rigidity and bradykinesia, both cardinal mo-
tor dysfunctions in PD. The drawing of straight lines also
highlights tremor, another common motor symptom. In the
cognitive domain, the task highlights impairments within
visuo-spatial reasoning and task planning, two of the major
faculties that are affected by cognitive variants of PD.

3.2 Features
Table 1 lists the features that are available for each draw-

ing. Features 6–17 were extracted programmatically from
the tablet recordings. This first involved aligning the sub-
ject’s drawing against the spiral pentagon template, which
was done by identifying the corner points (using gradient
information and the angle between line segments) and as-
sociating each of these with the nearest corner point in the
template. Figure 1 shows an example of a drawing aligned
to the template, with the corner points marked by small
circles.

The extracted features capture a range of different motor
and cognitive functions. Total time is an indication of a sub-
ject’s drawing speed; this is generally slower in PD patients
than age-matched controls, and is also likely to be affected
by the patient’s cognitive state. Area error is primarily an
indication of the accuracy of a subject’s visuo-spatial rea-

tral - Oxford C NHS REC (ref: 15/SC/0365). Other data
generated during this research is available at the following
DOI: 10.17861/958af07e-d336-4202-854e-12188211873a.
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Figure 1: Example of a patient’s spiral pentagon
trace overlaid on the template.

soning, but may also be affected by motor dysfunction. Dis-
tance travelled is likely to increase if the subject is experi-
encing tremor. Whilst subjects are asked not to lift the pen,
many do, and the number of times they lift the pen may be
an indication of executive dysfunction. Zero velocity indi-
cated hesitation, which may also be a sign of executive dys-
function (e.g. task planning). Unlike healthy controls, PD
patients are known to exhibit multiple acceleration bursts
when carrying out movements; they are consequently likely
to have smaller periods of zero acceleration.

The features discussed in the previous paragraph all sum-
marise an entire drawing. Initial analysis of the recordings,
however, indicated that patients exhibit certain dysfunctions
in only parts of the drawing, particularly the different radial
triangular segments of the image. To capture this, we also
extracted the total time (a mixed indicator of motor and
cognitive function) separately for each of these segments.
These are recorded as features 8–12.

Table 1: Features used in the developed approach.

ID Feature

1 Dominant or non-dominant hand
2 Side of the illness
3 Number of the attempt the patient is performing

the task
4 Patient/Control
5 Disease duration
6 Total time: time taken to complete one spiral pen-

tagon task
7 Area error: Area created between the template

pentagon and the pentagon drawn by the patient
8-12 Time spent in each triangle formed within the pen-

tagon. Vector of five values
13 Total distance travelled by the pen
14 Times the pen leave the tablet surface: patients are

instructed to not remove the pen from the tablet
15 Total time the pen was in contact with the tablet
16 Duration of zero velocity during whole task
17 Duration of zero acceleration during whole task

3.3 Polynomial Regression
In regression modelling, the main goal is aimed at learn-

ing from a finite number of training data an unknown real-
valued function in such a way that it has a high level of
generalisation in its prediction capabilities when it is ap-
plied to a given test data [2, 8]. In such problems it is
common the use of dictionary methods where basis func-
tions are represented [9]. The most widely used approach
to select the function expansions is the non-adaptive strat-
egy in which the model always includes a predetermined
set of basis functions that were not adapted from the train-
ing data. Contrary to this approach, an adaptive modelling
method [12] fits the basis functions to the data by means of a
search mechanism which implies that the degree is added as
a new parameter to fit. However, in this polynomial regres-
sion problem the number of candidate functions presented
in the dictionary will be exponentially increased [2, 8].

However, the power of the function cannot be extended
infinitely. A common problem of considering high complex
models is that they tend to overfit the data and the regres-
sion curve may oscillate wildly between data points. These
effects normally induce large prediction errors [10]. In order
to find a trade-off between not overfitting and capturing well
enough the relationships within the data to achieve a good
predictive performance, the most popular approach is to re-
duce the number of explanatory variables to a subset that
potentially could provide good results. The search within
this subset is performed by a combinatorial optimisation
process where an exhaustive search is in fact impractical [20].

Simple heuristics were proposed to reduce computational
time like forward selection [8, 20] or beam search, selected
by Todorovski et al. [23] within his CIPER (Constrained In-
duction of Polynomial Equations for Regression) algorithm
that learns polynomial algebraic equations from data. How-
ever, these approaches are not powerful enough to cope with
problems of large dimensionality. Even facing a problem
with limited complexity, the content of this subset is nor-
mally not known in advance and due to that a previous
search sometimes is required to find the structure of the
model before the main learning process starts, which may
not be trivial.

A linear regression model can be defined by a linear ex-
pansion of functions as follows:

F (x) =

k∑
i=1

bifi(x) (1)

where b = (b1, b2 . . . , bk)T is a vector of predictors that are
defined as parameters of the model, k is the number of basis
functions and parameters and finally fi(x), i = 1, 2 . . . , k are
the basis functions of input x. The evolution towards more
complex models can be defined by the nonlinear transfor-
mations of x where the linearity in the constant parameters
is maintained. As a result every polynomial is composed
by a set of individual coefficients and degrees and standard
linear regression methods can still be used to estimate the
parameters efficiently. The general formulation for polyno-
mial regression can be depicted as:

Z = α+

m∑
i=1

βi · Ti (2)

where Z is the dependent term called the response vari-
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able, T =
∏n

j=1 x
ai,j
j is a vector of the predictors, β =

(β1, β2 . . . , βN ) is a vector of unknown coefficients where
βi 6= 0, α is a constant and m is the degree of the poly-
nomial. Assuming continuous derivatives of the regression
function at points T , local polynomial fitting permits esti-
mating the parameter vector β.

If the degree of a polynomial dg is defined by the max-
imum degree of the terms T in that polynomial Z, then
dg(Z) = maxr

i=1 dg(Ti) and the length of a polynomial len
is the sum of the degrees of all terms represented in that
polynomial len(Z) =

∑r
i=1 dg(Ti), then for a polynomial of

degree d and length l, the total number of possible basis
functions within the dictionary is:

numFun =

l∏
i=1

(1 +
d

i
) (3)

3.4 Pareto Archived Evolution Strategy
Pareto Archived Evolution Strategy (PAES) [13] is a sim-

ple and effective multi-objective optimisation algorithm that
combines the use of local search techniques with a hill-climbing
and random mutation strategy. In its original variant called
(1+1)-evolution strategy, the algorithm uses a unique-parent
and a single-offspring that are compared in each iteration.
The calculation of the quality of new candidate solutions is
supported by means of the information provided towards a
set of diverse non-dominated solutions stored in the archive.
The creation of the offspring is generated by the use of bi-
nary strings and a unique bitwise mutation operator which
is compared with its single parent. This latter factor dif-
ferentiates this approach from other MOEAs that maintain
a population of solutions. The strategy uses an archive of
previously visited non-dominated solutions to estimate the
dominance rating of the new solution. A maximum size of
the archive refers to the desired number of final solutions.
Based on that structure, the algorithm is capable of distin-
guishing between good and bad quality solutions.

PAES is an algorithm with a performance profile that
is competitive with that of more recent algorithms, espe-
cially on larger-scale problems under the constraint of a re-
duced time budget. See Algorithm 1. In our approach, we
run PAES multiple times from different initial points in the
search space, maintaining a solution archive that is shared
between subsequent executions of the algorithm. This per-
mits a relatively broad exploration of the search space.

3.5 The Search Algorithm
A MOEA can be applied to the task of finding which pre-

dictor variables are informative in regard to different ob-
jectives. In this case, we consider the two objectives of
predicting motor and cognitive deficit in Parkinson’s Dis-
ease Patients, as measured by UDPRS and MoCA scores.
The algorithm uses as input a dataset that contains infor-
mation about independent and dependent variables which
defined possible polynomial structure. The set of possible
features have been extracted from clinical test data collected
by Leeds Teaching Hospitals NHS Trust which are depicted
in Table 1.

The type of MOEA algorithm applied in this paper is a
modified version of (1 + 1) PAES algorithm where a single
chromosome is evolved. In each generation, a polynomial
regression algorithm is used to calculate the fitness function

Algorithm 1 PAES

Require: Max iter
Generate int sol and set it as Current sol
Evaluate objective values of the Current sol
Add Current sol to archive
for i = 1 To Max Iter do

Randomly select one factor to mutate (power, feature);
Generate new sol by mutating Current sol;
Evaluate fitness values of the New sol
if New sol dominates Current sol then

Set New sol as Current sol
Update archive

else
if Current sol dominates New sol then

Discard New sol
else . Current sol and New sol do not dominate

each other
Update archive using New sol
if New sol dominates any member of the

archive then
remove them
add New sol to archive

else
add New sol to archive
randomly select a Current sol among

New sol and Current sol
end if

end if
end if

end for
return Non-dominated solutions

by estimating the error of fitting this given polynomial to the
UDPRS and MoCA scores assigned to the patients. Each
polynomial equation included in the population of solutions
is structured as Eq. 2.

It is not reasonable to consider the entire search space of
all possible polynomials since the use of high-level complex
functions normally entails the overfitting of data and could
also have additional effects in which the model may even
become numerically unstable. To control these effects a be-
forehand bound of the dictionary of basis functions should
be performed. According to Equation 3, the number of pos-
sible subsets from a dictionary of size m is 2m. Each of these
subsets can be a candidate for our subset of selections. Since
most of the times the complete revision of all of these possi-
bilities are unhandleable due to its complexity, a maximum
boundary for the length and the degree of the model has
been selected, with values of d = 8 and l = 8. Other non-
population based algorithms commonly start the search with
the simplest possible equation, that is a constant term that
is developed towards more complex structures by a process
of adding new basis functions [23]. By means of an itera-
tive process the application of the refinement operator can
generate all the possible candidate polynomial equations.

The evolutionary algorithm PAES starts with the gener-
ation of a single individual solution. Every time the algo-
rithm finds a good non-dominated solution, this solution is
stored in the archive that for our purpose is defined with
unlimited size. The archive constitutes the current approx-
imation of the Pareto front. Each of these chromosomes
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are constructed by the random generation of two different
vectors represented as follows:

f = (f1, f2 . . . , f8), fi ∈ {1− 17} (4)

a = (a1, a2 . . . , a8), ai ∈ {1− 8} (5)

where f is a vector of features and a is the vector of ex-
ponents/powers of the predictors. Both elements depict the
internal structure of a given polynomial.

In order to evaluate the suitability of a determined equa-
tion, the values of these generic constants have to be fitted
against the data, using of a subset of the collected data se-
lected for the training process. A different training subset is
generated every time the polynomial is assessed.

The quality of the obtained equation is evaluated using
the fitness function. This function returns a pair of val-
ues, each of them measuring the discrepancy between the
assigned values of UDPRS and MoCA scores and the values
predicted using the equation respectively. The estimation of
the ability of the selected parameters to fit the data is per-
formed using the Ordinary Least-Squares (OLS) method [8,
22] in which the function is aimed at minimizing the resid-
ual sum of squares. This is a typical metric applied to linear
regression problems. The calculation can be mathematically
defined as follows:

b = arg min
b

n∑
j=1

(
yj − F (xj)

)2
(6)

where yj is the response variable for the i-th training ex-
ample, xj is the value predicted for the same training exam-
ple using the equation, n is the total number of data points
and F is defined in Equation 1.

Two mutation operators are used. One targets the power
ai of one of the terms fi of the polynomial, which it ran-
domly increases or decreases. To choose the same previous
value is not permitted. This allows the modification of the
level of complexity of the equation. The second perturbs the
value of one the features of the equation fi, selecting ran-
domly another one. In each generation, an elitist mechanism
tries to refine the polynomial equation to evolve to a more
effective area of the search space. Special care is taken that
the newly introduced term is different from the previous one
and no redundancy is stored in the archive.

The stopping criterion is defined by a determined num-
ber of times that a given solution is evolved. This number
could vary from 100 to 500. Since the archive is shared be-
tween runs, new non-dominated solutions are added to the
structure every time the algorithm finds one in its different
runs.

The outcome of the algorithm consists of the best non-
dominated polynomial equations that have been found which
are allocated in the archive for each of the different exponent
values considered.

A solution can be depicted by two vectors: a vector β of
predictors:

β = (β0, β1 . . . , β8) (7)

where β0 is the independent term and a vector of residual
errors which contains one value for each score considered.

4. RESULTS
Regression performance is estimated using a set of un-

seen examples using 10-fold cross-validation. Overall per-
formance is measured by calculating the hypervolume [24]
derived from the estimated Pareto front. This indicator
retrieves information related to the convergence and the
spread of the set of non-dominated solutions that belong
to the known Pareto front. The mathematical formulation
of hypervolume (Hv) can be depicted as follows:

Hv(P ) = λ
(
∪p∈P x|p ≺ x ≺ r

)
(8)

where λ defines the Lebesgue measure, P is the Pareto
approximation to the real Pareto front and p and r represent
the utopia and anti-utopia points used as a reference. In our
analysis setup, lower values of hypervolume correspond to
better outcomes which indicate that the approximate P is
closer to the true Pareto front.

To begin with, we considered the trade-off between model
complexity and predictive ability, by running the algorithm
with different limits placed on the maximum exponent until
no new solutions have been found in ten consecutive runs for
each different power considered. Figure 2 shows the hyper-
volumes for exponent limits between 1 (a linear model) and
8. This suggests that a linear regression model would not be
sufficient to predict the clinical measures, and justifies our
use of a polynomial model. However, it is not clear from this
plot which is the optimal upper limit for model complexity.

Figure 3 depicts the Pareto front (in red) created by com-
bining the archives from all the runs summarised in Figure
2. It can be seen that the polynomial regression models in
both tails of the front are able to generate robust predic-
tions for either motor and cognitive scores. This indicates
that polynomial regression models are sufficiently expressive
for this task, and that PAES is effective at searching for ap-
propriate model instances. The shape of the front shows
a clear trade-off, with models around the mid-point having
fairly poor predictive ability for both regression targets. Ta-
ble 2 lists the solutions in this Pareto front. Figure 3 also
shows the Pareto front (in blue) when only linear models
are used; this again highlights the relatively poor predictive
ability of linear models on this task, though it is notable that
the shape of the front is broadly similar to the higher-order
polynomial case.

Analysis of the features used by the evolved models gives
some insight into the utility of different features for predict-
ing motor and cognitive deficit. In general, the most used
features for both objectives are do to with the time spent
drawing and the area error, i.e. speed and accuracy. The
model with the smallest residual error for UPDRS scores is:

y = 56.1f3
9 + 16.1f3

12 + 0.4f4
10 + 3.0f5

6

+0.3f5
7 + 9.0f5

11 − 120.2f5
12 − 17.5f5

13 (9)

and the model for the smallest MoCA residual error is:

y = −1.4f2
3 − 0.038f3

7 + 0.68f4
9 − 7.9f5

6

+7.5f6
9 + 24.0f7

12 + 0.22f7
13 + 0.71f7

15 (10)

Further analysis is required to fully understand the medi-
cal significance of these results. However, the feature usage
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Figure 2: Relationship between regression error
and model complexity, showing the hypervolume for
each of the exponents considered.

seems to confirm existing knowledge. For example, slow-
ing of movement (indicated by time spent drawing, par-
ticularly over a series of repeats) is closely associated with
the progress of the motor disorder, and impoverished visuo-
spatial reasoning (indicated by area error) is associated with
cognitive decline. In future work, we aim to extract a much
larger group of features, particularly features within a draw-
ing cycle, such as velocity and acceleration around corners.
We will also consider a wider range of objectives, including
other predictive variables (such as accuracy early in the dis-
ease, which is more useful for diagnosis), and non-predictive
factors such as minimising the complexity of the model (e.g.
number of features).
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Figure 3: Non-dominated sets of solutions. Red
points show the Pareto front for all polynomial re-
gression models, blue points show the Pareto front
for linear models.

Further analysis is required to fully understand the medi-
cal significance of these findings. However, some of these ob-
servations seem to confirm existing knowledge. For example,
slowing of movement (indicated by time spent drawing, par-
ticularly over a series of repeats) is closely associated with
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Figure 4: Scatter plot showing regression errors for
each objective for each subject, using the two poly-
nomial models with the best overall fit to MoCA and
UPDRS scores. Colours indicate disease classes.

the progress of the motor disorder, and impoverished visuo-
spatial reasoning (indicated by area error) is associated with
cognitive decline. Hence, the approach seems valid. In fu-
ture work, we aim to extract a much larger group of fea-
tures, particularly features within a drawing cycle, such as
velocity and acceleration around corners. We will also con-
sider a wider range of objectives, including other predictive
variables (such as accuracy early in the disease, which is
more useful for diagnosis), and non-predictive factors such
as minimising the complexity of the model (e.g. number of
features).

It is interesting to consider whether the evolved models
have uniform error rates across the different patient and
control groups. To test this, Figure 4 shows the regression
errors for the motor and cognitive measures for each subject,
using the models from both ends of the Pareto front. In gen-
eral, it appears that the predictive behaviour of the models
is not uniform. The motor ability of controls with normal
cognition is consistently under-estimated, as indicated by
the left-offset of the olive green group in the figure. The
motor ability of Parkinson’s patients with normal cognition
is, by comparison, predicted quite accurately, with errors
distributed fairly equally around the origin.

The cognitive ability of controls and patients with normal
cognition is also predicted fairly well. However, there is
significantly more variance in the predictions of the cognitive
abilities of subjects with cognitive impairment. Notably, the
cognitive scores of Parkinson’s patients with dementia are
generally under-estimated.

These differences may in part reflect proportionally smaller
numbers of subjects with low MoCA scores (dementia) and
high UPDRS scores (non-PD) in the data set, and a con-
sequent over-fitting of the models to certain parts of the
ranges. However, they may also indicate real differences
between the groups. Another interesting facet is the clus-
tering of subjects at the top and bottom of the MoCA er-
ror range, seen as horizontal lines in the scatter plot. For
these subjects, there seems to be a fairly consistent under-
or over-prediction. Again, it is unclear whether this is due
to properties of the model, or whether it points to more sig-
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nificant differences within the subject population. We plan
to explore this further in future investigation.

5. CONCLUSIONS
Parkinson’s is a complex disease that leads to different

symptoms in different patients. Most patients experience
impaired motor function. However, many patients also ex-
perience cognitive dysfunction, and a significant proportion
of these patients go on to develop dementia. The ontology
of Parkinson’s disease is only partially understood, and it is
unclear which symptoms are of diagnostic significance at dif-
ferent stages of the disease, and whether a particular patient
will go on to develop cognitive symptoms. In this paper, we
have taken an initial look at whether multi-objective evolu-
tionary algorithms can be used to better understand trade-
offs when diagnosing and prognosing Parkinson’s. In partic-
ular, we focused on the trade-off between predicting motor
and cognitive symptoms using regression models trained on
objective features extracted from a clinical assessment task.
The results are promising, showing that both motor and
cognitive features can be predicted fairly well. We chose
to use a relatively simple regression model in order to im-
prove interpretability. Analysis of the trained models shows
that different groups of features are particularly relevant to
assessment of motor and cognitive signs, and a number of
these match with existing clinical knowledge. In future work
we will consider a much broader range of features, and also
carry out a more in depth analysis.
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Power MoCA UPDRS Features Power
1 7 261.669 86.37 7, 16, 12, 11, 6, 13, 7, 7 7, 7, 5, 6, 6, 7, 7, 3
2 5 234.812 12.029 12, 9, 11, 6, 12, 7, 13, 10 3, 3, 5, 5, 5, 5, 5, 4
3 5 141.165 16.881 12, 9, 6, 6, 12, 11, 13, 10 3, 3, 5, 5, 5, 5, 5, 4
4 7 188.139 14.546 7, 16, 12, 11, 6, 13, 7, 7 7, 7, 5, 6, 3, 6, 7, 3
5 6 138.869 43.16 6, 5, 12, 12, 11, 7, 16, 7 5, 5, 6, 4, 6, 6, 6, 5
6 2 138.031 49.216 12, 15, 6, 8, 12, 17, 16, 16 1, 2, 2, 1, 1, 1, 2, 1
7 6 115.074 82.795 6, 5, 12, 12, 12, 7, 16, 7 5, 5, 6, 4, 6, 6, 6, 5
8 7 93.073 93.888 7, 16, 13, 11, 6, 13, 3, 7 7, 7, 5, 6, 6, 7, 7, 3
9 7 74.324 95.174 7, 16, 12, 11, 6, 13, 3, 7 7, 7, 5, 6, 6, 7, 7, 3
10 7 55.477 97.556 7, 8, 13, 11, 6, 13, 3, 7 7, 7, 5, 6, 1, 7, 7, 3
11 7 49.515 17.2109 12, 13, 9, 6, 15, 9, 3, 7 7, 7, 4, 5, 7, 6, 2, 3
12 7 49.529 110.828 12, 13, 9, 13, 15, 9, 3, 7 7, 7, 4, 5, 7, 6, 2, 3

Polynom1 Polynom2
1 24.344, 1.477, 1.626, -0.082, -0.687, -0.659, -2.716, 1.477, -2.222 20.618, -3.689, -7.413, 1.836, 5.958, 1.493, 9.083, -3.689, 7.619
2 24.407, -1.629, -0.262, 0.098, -0.662, 1.511, 0.281, -0.109, -0.282 16.061, 56.12, 8.974, 2.985, 0.211, -120.216, 0.277, -17.487, 0.442
3 24.38, -1.935, -0.16, -0.308, -0.308, 1.81, -0.015, 0.044, -0.143 20.319, 32.059, 2.672, 0.75, 0.75, -30.153, -0.903, -1.092, 2.751
4 23.508, 1.338, 1.524, -14.899, -0.631, -0.426, -2.527, 1.338, -1.98 21.201, -1.779, -6.404, 1.808, 7.796, 1.657, 5.943, -1.779, 5.609
5 24.117, -0.398, 0.062, 1.243, -1.366, 0.187, 6.408, -0.456, -6.372 20.7, 1.422, 2.895, -99.253, 100.954, -0.023, -13.267, 1.016, 12.303
6 24.409, 0.407, -0.342, -0.535, -0.947, 0.407, 1.501, 0.25, -1.292 20.267, 0.346, 5.355, 1.731, 4.352, 0.346, -7.081, -2.272, 3.477
7 25.012, 7.157, -0.173, 0.319, -0.717, 0.319, 17.879, 0.038, -15.055 20.474, 1.509, 1.268, -53.395, 108.71, -53.395, -16.665, 1.776, 16.084
8 24.324, 2.607, 1.759, -2.796, -0.533, -0.599, 0.122, -1.212, -1.911 20.862, 9.17, -5.347, 31.799, 5.424, 0.697, -33.56, 12.354, -2.466
9 24.291, 1.197, 1.3, -0.058, -0.673, -1.725, -1.549, -1.277, -1.04 20.112, 2.672, -4.889, 1.584, 4.445, 0.802, 2.514, 11.667, -0.318
10 24.17, 2.746, -0.377, -12.657, 0.04, -0.567, 10.823, -1.589, -1.086 20.397, 1.213, 0.344, 17.215, 2.098, 1.181, -17.575, 11.943, -0.205
11 24.017, 0.216, 0.677, -7.926, -0.392, 0.713, 7.455, -1.353, -0.038 22.584, 40.264, -0.329, 4.642, 0.678, 0.64, -3.153, 11.959, 0.317
12 24.26, -1.319, 2.176, -10.821, -1.491, 0.469, 10.317, -1.336, 0.473 20.102, 0.934, -15.343, 16.881, 14.652, 0.607, -15.007, 11.753, -1.007

Table 2: Non-dominated polynomial regression models, showing cumulative errors for each regression target,
features used, with corresponding powers, and the coefficients that are fitted to the model for each of the
regression targets.
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