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ABSTRACT
Introduction and objective: Computer Aided Decision (CAD)
systems based on Medical Imaging could support radiolo-
gists in classifying malignant regions from benign ones, in
the field of investigation for breast cancer detection. This
decision may often follow a previous procedure dedicated to
the earlier identification of Regions Of Interest (ROI) con-
taining still unclassified lesions.

Materials and methods: Materials comprise features ex-
tracted from magnetic resonance (MR) images representing
morphological properties of lesions. The Regions Of Inter-
est identified by a previous automatic procedure validated
by radiologists of the University of Bari Aldo Moro (Italy),
authors of this work, 134 from 600 slices considered of in-
terest, because they contain still unclassified damaged ar-
eas. Several techniques were tested for ROI segmentation
and classification. In particular, it can be shown that the
same procedures for lesioned-area discrimination were also
useful for malignancy classification of lesions, themselves.
In particular, MR images were processed with different im-
age processing techniques for ROI extraction, which were,
ultimately, described by morphological features, such as cir-
cularity, aspect ratio, solidity and convexity. Finally, we
discuss a procedure to design a feed-forward supervised arti-
ficial neural networks (ANN) architecture based on an evo-
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lutionary strategy. In a similar approach, different ANN
topologies were tested in order to find the best in terms
of mean accuracy for several iterations of training, valida-
tion and test. In particular, for each topology, the training,
validation and test sets were constructed using 100 random
permutations of the dataset, from which the average perfor-
mances were calculated.

Results: The performance of the best ANN architecture,
trained using a training set of 82 samples (equally divided
between malignant and benign lesions) from the 134 samples
available in the whole dataset, were evaluated in terms of
accuracy, sensitivity and specificity.

Conclusion: Testing determined that the supervised ANN
approach is consistent and reveals good performance; in par-
ticular, the optimal ANN topology found through an evolu-
tionary strategy showed high generalization on the mean
performance indexes regardless of training, validation and
test sets applied, showing good performances in terms of
both accuracy and sensitivity, permitting correct classifica-
tion of the true malignant lesions.

CCS Concepts
•Computing methodologies→ Neural networks; Ge-
netic algorithms; Image processing; •Applied com-
puting → Imaging;

Keywords
Medical image classification; Artificial Neural Networks; Breast
Lesions Diagnosis; Decision Support Systems

1. INTRODUCTION
Nowadays, the second leading cause of death among women

is breast cancer after lung tumor [1]. Advances in auto-
mated diagnostic tools allow clinicians to perform examina-
tions of mass screening for the most common diseases, such
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as breast cancer [2, 3], or polyps detection [4], where specific
clinical markers help specialists in their diagnosis. Several
data processing approaches in the specific medical domains
are already being developed [2, 3, 5, 6, 7], due to improv-
ing effectiveness in classification and prediction networks,
which significantly help clinicians in their decision making.
Classification and prediction are two kinds of data analy-
sis that can be used to extract models describing important
data classes or to predict future data trends [6]. Besides the
importance in finding ways to improve patients’ outcomes,
these computational decision support systems can reduce
health costs. Moreover, several innovations in diagnostic
tools for the detection of various anatomical or pathological
features have been, until now, developed based on Multi-
Layer Perceptron Neural Networks and Genetic Algorithms
[7, 8].

Contrast enhanced magnetic resonance imaging (CE-MRI)
plays an important role in the diagnosis of breast cancer with
a reported sensitivity and specificity of 95 − 99% and 80%
respectively [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Image
analysis is based on both morphological feature extraction
and the enhancement of lesion patterns in dynamic breast
MRI. This includes lesion enhancement in the early, inter-
mediate and late post-contrast phases as depicted by means
of time-signal intensity curves (TIC). The TICs are classified
as steady (type I), plateau (type II) and wash-out (type III),
respectively indicating benign, suspicious and malignant le-
sions, as in [20]. However, the not completely known biologic
and patho-physiologic mechanisms of contrast named wash-
in and wash-out, and the histological variability of breast
lesions, explain the diverging results which have been pub-
lished concerning diagnostic values of TICs [10, 20, 21]. Re-
cent studies suggest the use of modified dynamic protocols
with a reduced temporal and increased spatial resolution,
compared to the standard dynamic protocol for detecting
subtle morphologic details of key diagnostic importance in
breast MRI [22].

Therefore, abbreviated MR protocols, including the pre-
contrast and the third post-contrast THRIVE (T1-weighted
high resolution isotropic volume) sequence, have been pro-
posed in the field of breast MRI for lesion detection and char-
acterization. In fact, in [21] the third post-contrast THRIVE
sequence has been proposed; it consists of the acquisition of
THRIVE sequence, 3 minutes after the contrast material
injection, that is during the intermediate post-contrast pe-
riod, or rather, when the wash-in phase is completed and the
wash-out phase has not yet occurred. THRIVE images allow
evaluation of lesion morphological characteristics with high
spatial resolution, including their internal architectures and
contrast enhancement. Therefore, the post-contrast image
analysis mainly depends on the detection of enhancing ar-
eas, and on the evaluation of their morphology and internal
architecture.

The following paragraphs are organized as follows: in Sec-
tion 2 materials are described in terms of patients’ charac-
teristics, image acquisition protocol and preliminary image
processing procedure regarding feature segmentation, char-
acterization, description and quantitative evaluation. In
Section 3 the methodology for the search and design of the
optimal classifier is described; moreover, the strategy for
reaching the best performance by the classifier itself. In
Section 5 obtained results are presented, while in Section 6
the conclusions are presented.

2. MATERIALS

2.1 Patients
Between January and March 2015, 20 patients selected by

the medical team, consisting of 10 diseased patients and 10
healthy ones, underwent MR examination. The twenty pa-
tients (women aged 28−77 years; mean± standard deviation
(SD), 53.2±8.9 years) have a family history of breast cancer
and dense glandular structure, or have suspected breast le-
sions detected by mammography or ultrasonography (US),
and provided informed consent according to the Declaration
of Helsinki principles.

2.2 Magnetic Resonance Acquisition Protocol
MR examination was performed in the second week of

the menstrual cycle in case of pre-menopausal women. In
the case of a positive dynamic imaging result, histological
examination provided by US-guided core needle biopsy was
performed at second look US in all patients. In case of a neg-
ative result, patients were invited to resume periodic breast
US examination after 6 months. MR examinations were
performed on a 1.5 T MR device (Achieva, Philips Medical
Systems, Best, The Netherlands) by using a four-channel
breast coil.

The image acquisition protocol includes two phases dur-
ing which several analyses were performed. The standard
protocol consisted of:

• Transverse short TI inversion recovery (STIR) turbo-
spin-echo (TSE) sequence (TR/TE/TI = 3.800/60/165
ms, field of view (FOV) = 250x450 mm (APxRL), ma-
trix 168x300, 50 slices with 3-mm slice thickness and
without gaps, 3 averages, turbo factor 23, resulting in
a voxel size of 1.5 x 1.5 x 3.0 mm3; acquisition time:
4 minutes);

• Transverse T2-weighted TSE (TR/TE = 6.300/130 ms,
FOV = 250x450 mm (APxRL), matrix 336x600, 50
slices with 3-mm slice thickness and without gaps, 3
averages, turbo factor 59, SENSE factor 1.7, resulting
in a voxel size of 0.75x0.75x3.0 mm3; acquisition time:
3 minutes);

• Three-dimensional dynamic, contrast-enhanced (CE)
T1-weighted high resolution isotropic volume (THRIVE)
sequences (TR/TE= 4.4/2.0 ms, FOV = 250x450x150
mm (APxRLxFH), matrix 168x300, 100 slices with
4-mm slice thickness, spacing between slices: 2 mm;
turbo factor 50, SENSE factor 1.6, 6 dynamic acqui-
sitions, resulting in 1.5 −mm3 isotropic voxels, a dy-
namic data acquisition time of 1 min 30 s, and a total
sequence duration of 9 min).

Gadobenate dimeglumine (Multihance, Bracco, Milan, Italy)
was intravenously injected at a dose of 0.1 mmol/kg of body
weight and flow rate of 1.5 ml/s followed by 20 ml of saline
solution.

2.3 Description of the Images
The first phase was carried out without Contrast Medium

(CM) with the following settings:

• Number of slices: 60

• Resolution of 512x512 px
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• Thickness equal to 3 mm

• Gray levels with 11 bit gray-scale

After the first examination, the second phase is prepared,
including six new scans, the first of which is done without
CM. A contrast molecule is then given to the patient and 5
regular scans are subsequently performed every minute. It
is necessary for the patient to move as little as possible in
order to maintain the overlapping of the acquired slices.

In detail, this second stage was performed with the fol-
lowing settings:

• Number of slices: 100

• Resolution of 320x320 px

• Thickness equal to 4 mm

• 2048 Gray levels

3. METHODS

3.1 Image Registration
After capturing a significant number of slices of the same

chest region at different time instances, the Image Regis-
tration procedure allows the exact superimposition of all
slices. This procedure, constituted by several stages, is of
utmost importance both for the human interpretation and
for CAD. In detail, all images captured in the first phase and
the fourth scanned in the second phase are investigated; as
these are the images obtained when the contrast is more
enhanced.

Unfortunately, scanned images had a different number of
slices due to the different thickness of the examination; thus,
a spatial matching between the two sequences was necessary
in a range r = 1 mm. When slice matching was achieved,
all other images were deleted, so two groups of comparable
images were obtained.

A downsampling of the image depth, from 2048 gray levels
to 256, was carried out executing a min - max normalization,
scaling pixels in range [0 − 255], and auto-adjustment of
the contrast, for light isolated pixels removal. Moreover, a
suitable resize, from 320 to 512 pixels, was executed for all
images belonging to the second phase. Finally, all couples
of images coming from the second phase were registered by
means of the Rotation and Scale Translation functions in
”multimode” mode.

3.2 Thorax Masking
In this CAD analysis the thoracic area was excluded from

scanned images to avoid confusing the subsequent image pro-
cessing phase.

For this purpose, the thorax was identified by consider-
ing a geometric parabola, which approximately follows the
external border of the rib cage, characterized by three inter-
polation points, A, B, C, as shown in Fig. 1.

The above procedure was applied to the images acquired
without CM, as they were less noisy: processing comprised
executing the edge detection algorithm using the Prewitt
operator [23], and then removing stray or isolated pixels.

Due to the correct execution of the acquisition protocol,
all the images were correctly centered.

In order to find the limits of thoracic area, the point corre-
sponding to the sternum had to be found. By starting from

Figure 1: Interpolation of geometric parabola by means of
points A, B, C

the median axis of the image, the first two intersections with
the sternum, P and P’ respectively, were searched; then, the
first point (A) was found as the midpoint of the segment
P-P’ as shown in Fig. 2.

(a) (b)

(c)

Figure 2: Processing procedure applied to an MRI: 2a Im-
age acquired without CM; 2b Prewitt edge detection; 2c )
Identification of point A as the midpoint of the segment P-P’
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Moreover, in order to find points B and C, every image had
to be analyzed starting from the left and right to determine
point B and C respectively (Fig. 3). Each image had to be
processed by columns until three adjacent light pixels were
found. These pixels allow the recognition of the external
lateral borders of the thorax in a point E on the left. In the
same way, the external lateral point E’ could be recognized
on the right. The vertical segment between point A and
point E could thus be evaluated and the interpolation point
B was taken at 2/3 of this segment height.

The same procedure was applied to determine the inter-
polation point C.

Figure 3: The algorithm representation for lateral border
search.

The proposed procedure can be summarized as follows:

• starting from the pixel (0, 0) at the top left, each col-
umn of an image is processed from top to bottom, look-
ing for 3 adjacent white pixels;

• if adjacent pixels are found, continue with the next
column;

• otherwise the obtained point will represent the left end
of the torso;

• move this point upwards of 2/3 of the distance between
it and the point A to find the point B;

• starting from the right side, the same procedure has
to be followed to find the point C;

• points A, B, C have to be interpolated as a parabola.

Then, the individuated area under the parabola can be
subtracted from all images, which were previously registered
and equally centered, as stated before. It can be noted that
in this phase, some thoracic skin tissue was included in the
final image in order to highlight any injuries. In this way,
the breast area of interest was effectively isolated in order
to proceed to the segmentation phase.

3.3 Image Segmentation
Since ROIs had been previously processed to remove unde-

sired elements, the first step of this phase concerns Thresh-
olding. Images without CM were firstly considered to find
the optimal value of threshold, by using the 95th percentile
of the gray level distribution, after excluding levels between
[0− 10] from the image histogram.

(a)

(b)

Figure 4: Image histogram with (Fig.4a) and without
(Fig.4b) the pixels with gray level in range [0− 10]

The removal of all very dark pixels was due to their preva-
lence in the histogram (Fig. 4); moreover, image darkness is
also linked to the physique of each patient: more slender a
patient is, the greater number of black pixels his histogram
will have. Then, measurements of areas are converted from
pixel space to mm2 in order to filter all regions with a diam-
eter lower than 5 mm. In this way, a binary mask (Fig. 5),
used for images both with and without MC, were obtained.

(a) (b)

Figure 5: The binary mask (Fig 5b) obtained from the
starting image in Fig. 5a
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3.4 Feature extraction
After determining adequate ROIs in the previous steps,

the following 10 features were extracted:

• F1: size in mm2 of the suspicious lesion;

• F2, F3: average value of the gray levels of images with
and without MC in ROIs, to determine areas with gray
intensity different from standard ones;

• F4, F5: standard deviation value of the gray levels of
images with and without MC in ROIs;

• F6: circularity expressed as 4π( A
P2 ) where A = ROI

area and B = ROI perimeter;

• F7: aspect ratio intended as majorAxis
minorAxis

;

• F8: eccentricity of the ellipse whose second order mo-
ments coincide with those of each ROI;

• F9: solidity, defined as ratio of the area of the ROI
and the area of convex hull;

• F10: convexity (or edge roughness), given by the ratio
between the perimeter of the convex hull and the one
of the ROI.

While circularity and aspect ratio are used to differenti-
ate blood vessels from other regions due to their elongated
shape, solidity and convexity are useful measurements to dis-
tinguish tumor region due to the high blood vessels presence
(Fig. 6), since they are indexes of the ROI roughness.

Figure 6: A (Blood Vessel): Area 68.3, Average grey value
TSE/CM 196.16 / 147.23, Standard Deviation TSE/CM
29.77/30.21, Circularity: 0.24, Aspect ratio: 4.92, Eccen-
tricity: 0.97, Solidity: 0.62, Convexity: 1.12;
B (Tumor): Area 166.35, Average grey value TSE/CM 95.66
/ 203.07, Standard Deviation TSE/CM 54.53/47.34, Circu-
larity: 0.77, Aspect ratio: 1.41, Eccentricity: 0.70, Solidity:
0.91, Convexity: 0.99

4. DETECTION AND CLASSIFICATION
Previous work has developed characterization and classi-

fication of ROIs between the ones that contain a lesion and
the uninteresting ROIs. In this work, a subsequent classifi-
cation step was developed for images with the presence of
lesions to classify among malignant and benign lesions (Fig.
7) starting from the input pattern [F1 - F10] described in
the previous section.

Figure 7: Block diagram of the classification process

4.1 Optimal ANN Topology Research
Neural networks are used to resolve a large variety of clas-

sification problems. In order to design a good NN classifier,
many empirical rules exist in literature; despite these, some
studies afforded the problem of searching the neural network
optimal topology as a research problem, since some studies
highlight the relationship between optimal network design
and statistical model identification [24]. Moreover, the use
of evolutionary algorithms for designing the optimal exper-
imental strategy have been widely reported, e.g. in [25, 26].

Designing of a neural network could be a critical point,
because a bad choice in the design phase could negatively
influence the capabilities of a such classifier, such as learning
or generalization.

As stated before, several approaches to research the best
ANN topology could be found in the literature, for example
in [8] the authors search the ANN optimal topology by using
a multi-objective genetic algorithm.

In this work, the research for the optimal topology for the
NN classifier was made by using a mono-objective genetic
algorithm (GA), described below. A binary chromosome was
assembled describing the following features of an artificial
neural network:

• Number of neurons in the first hidden layer, ranging
in [1− 256], coded with 8 bit;

• Number of neurons in the second hidden layer, ranging
in [0− 255], coded with 8 bit;

• Number of neurons in the third hidden layer, ranging
in [0− 255], coded with 8 bit;

• Activation function in the first hidden layer [0 − 3],
coded with 2 bit;

• Activation function in the second hidden layer [0− 3],
coded with 2 bit;

• Activation function in the third hidden layer [0 − 3],
coded with 2 bit.

The four activation functions coded in the chromosome
are the log-sigmoid (logsig), the hyperpolic tangent sigmoid
(tansig), the pure linear (purelin) and the symmetric satu-
rating linear (satlins).

The ANN features not encoded in the chromosome are
fixed; in particular, the training algorithm chosen for weights
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and bias update was the resilient backpropagation algorithm
[27], while the activation function set in the output layer was
the hyperpolic tangent sigmoid (tansig).

Total chromosome length is, hence, 30 bit. Operators em-
ployed in the GA set up were:

• Initial Population size equals to 100 individuals;

• Crossover with 2 points, with a probability of 0.8;

• Mutation, with a probability of 0.2;

• Selection system: elitism;

• Stop criteria set to maximum generations numbers (100),
or 20 consecutive generations with fitness value un-
changed;

• Fitness function =
∑iterations

n=1 accuracyn
iterations

.

As can be seen from the fitness function, GA found, as
an optimal solution, the NN topology that has the highest
mean accuracy after the number of iteration, which is set to
100; so each individual in the population, which corresponds
to a NN topology, is trained, validated and tested 100 times
and the fitness score associated with it is the mean accuracy,
where each accuracy is calculated using Equation 1.

Input data, coming from the previous elaboration (see Sec-
tion 3), is firstly preprocessed for normalization and balanc-
ing, as shown in the following paragraph.

4.2 Input Data and Data Preprocessing
In a preliminary step, the dataset is cleared of all uninter-

esting entries (e.g, areas without any kind of lesion). The
resulting dataset was composed of 27 entries with a benign
lesion (negatives) and 67 samples with a malignant one (pos-
itives).

It is well known that the performance of machine learn-
ing algorithms in medicine is typically evaluated using pre-
dictive accuracy, that is a measure of diagnostic ability to
correctly predict the output. If the classification categories
are not approximately equally represented the learning by
the classifier could be compromised, since it is not useful to
have unbalanced data in such a kind of problem [28]. The
dataset was balanced by using the Synthetic Minority Over-
sampling Technique (SMOTE) [29], in order to increase the
number of negative patterns until the amount of positive
ones to improve the classifier learning capability. The final
dataset was perfectly balanced presenting the same number
of samples for each class (67 positives and 67 negatives), so
a total number of 134 samples.

After smote balancing, the entire dataset was standard-
ized using the z-score technique [30], whose aim was to
rescale data absolute values in an interval centered in 0 and
with a variance equal to 1.

5. RESULTS
The optimal Neural Network topology specified by the

Genetic Algorithm constituted 4 layers, with 200 neurons
for the first hidden layer, 64 for the second, 15 for the third
and 1 neuron for the output layer. The activation functions
found by the GA were logsig for all the hidden layers, while
the tansig function was set for the neuron in the output
layer.

The NN training, validation and test sets were obtained
from the input dataset with 60% of samples for training,
20% for validation and 20% for test set. In particular, dur-
ing each iteration the above sets are obtained through a
random permutation of the dataset, maintaining balanced
the number of samples of each class.

Moreover, the classification thresholds were determined
by using Receiver Operating Characteristic (ROC) curves
[31] evaluating the True Positive Rate (TPR) against the
False Positive Rate (FPR) at various thresholds setting, in
order to find the value able to discriminate between the two
classes in the best way.

5.1 Performance Measures
Tests were performed on the optimal neural network, with

100 iterations using the same procedure previously described.
In Table 1, the confusion matrix, relative to the iteration
that has performed in the best way in terms of accuracy, is
presented.

XXXXXXXXXXPredicted

True
Positive Negative

Positive TP = 13 FP = 0
Negative FN = 0 TN = 13

Table 1: Matrix Function

We utilized the following formulas to measure the perfor-
mance of our classifier in terms of accuracy, specificity and
sensitivity:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Specificity =
TN

FP + TN
(2)

Sensitivity =
TP

TP + FN
(3)

As can be seen from the previous table, an accuracy of
100%, reached with a threshold value of 0.5822; in the worst
case, the value of accuracy was 73.08% (threshold value
0.4309). The resulting average indexes were 89.77% for
accuracy (standard deviation = 5.84), 0.8908 for sensitiv-
ity (standard deviation = 0.1021) and 0.9046 for specificity
(standard deviation = 0.0875)

6. CONCLUSIONS
In this paper we have presented a CAD system to support

radiologists in classifying breast lesions from MR images.
The design of a GA optimized ANN allowed us to achieve
good performance in terms of a 89.77% average accuracy
and 100% best accuracy.

The proposed automatic approach could be applied in
clinical practice in order to differentiate benign from malig-
nant breast lesions using CE-MRI, assisting the radiologist
to classify all the detected nodules and also to exclude areas
which do not require further investigations. These results
are innovative in the field of breast cancer diagnosis and
staging.

In the future, we can take advantage of a classification
framework split in two steps: a previous intelligent individ-
uation of ROIs and a following lesions classification. In this
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way, the whole process, that starts with MR image acqui-
sition and ends with the lesion classification could be fully
automated helping the radiologists during all the phases of
MR analysis.
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