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ABSTRACT
Diabetes mellitus is a disease that affects more than three
hundreds million people worldwide. Maintaining a good
control of the disease is critical to avoid not only severe
long-term complications but also dangerous short-term sit-
uations. Diabetics need to decide the appropriate insulin
injection, thus they need to be able to estimate the level of
glucose they are going to have after a meal. In this paper we
use machine learning techniques for predicting glycemia in
diabetic patients. The algorithms utilize data collected from
real patients by a continuous glucose monitoring system, the
estimated number of carbohydrates, and insulin administra-
tion for each meal. We compare (1) non-linear regression
with fixed model structure, (2) identification of prognosis
models by symbolic regression using genetic programming,
(3) prognosis by k-nearest-neighbor time series search, and
(4) identification of prediction models by grammatical evo-
lution. We consider predictions horizons of 30, 60, 90 and
120 minutes.

Keywords
Genetic programming; grammatical evolution; diabetes;
symbolic regression

1. INTRODUCTION
Diabetes Mellitus (DM) is a disease where patients suffer

hyperglicemia due to a defect either in the secretion and/or
in the action of the insulin. This happens because insulin
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allows the entrance of glucose inside the cells to be used. If
that does not happen, glucose remains in the blood. DM is
a worldwide health problem, according to the International
Diabetes Federation (IDF, [9]); in 2014 more than 387 mil-
lion people worldwide suffered from some type of DM.

In short, there exist two main types of DM: Type 1
(T1DM) and Type 2 (T2DM). T1DM is an autoimmune pro-
cess that destroys the cells where insulin is produced. It may
appear at any age, with a peak of incidence in infancy and
adolescence. T2DM, the most frequently seen type, usually
appears in mature adults. T2DM is related to the resistance
to insulin of the cells and can be treated with oral drugs.

All types of DM require to control the glucose level in the
blood. It is very important to maintain a good glycemic
control to avoid not only short-term, but also long-term
complications. On the one hand, prolonged high values of
glucose in blood, so-called hyperglycemia, augment the risk
of suffering from related health problems such as blindness,
kidney affections or amputations [12]. On the other hand,
extremely low values of glycemia are very dangerous since
they can lead to the loss of conscience, coma and in the
worst of the situations to death of the patient.

A T1DM patient must be able to calculate how much
insulin is needed to process the carbohydrates associated
to the meals without a dangerous increment in the glucose
level. This is a common issue and the majority of DM pa-
tients either make approximations or use generic predictors.
Diabetics must calculate the dose of insulin the need with
the result of capillary blood samples before meals and esti-
mating the amount of carbohydrates they are going to eat.
There are another variables they consider such as exercise,
stress, etc. Glucose level control is usually difficult and can
be facilitated by the use of continuous glucose monitoring
(CGM) systems and insulin pumps or personalized injec-
tions. CGM give the patients a lot of information to control
glycemia; still, this huge amount of data should be analyzed
carefully.

There exist many situations where it could be difficult
to control glycemia, especially for young patients which are
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in the main growth phase, patients with additional diseases
that could influence in the glycemia, pregnant women, or
even regular patients with high variability. In all those dif-
ficult cases it would be very useful to design a system able
to find a custom and individualized model of the glycemia
of the patient. With this model, the patient would be able
to decide the amount of insulin to inject, taking into con-
sideration the (number and types of) carbohydrates he/she
is going to eat, the glucose level and even other personal
considerations.

Recent research results show that there is a high degree of
variability in the responses of different individuals to iden-
tical meals - which indicates that the relationship between
meals, insulin administration, and blood glucose values is
still by far not completely understood. From the point of
view of informatics, one of the main problems in this context
is the lack of formal models that can be used to predict the
future values of blood glucose concentrations depending on
current glucose values, carbohydrate intakes, and insulin in-
jections. In the literature we can find numerous approaches
tackling the problem of the management of DM with emerg-
ing technologies, a recent review can be found in [19].

There are several approximations to the problem. For in-
stance, the work described in [16] is based on autoregressive
methods and is focused on prediction of hyper- and hypo-
glycemias. In [7] some averaged models are presented, in
[5] a review of minimal models is made and a parameter-
based model for predicting blood glucose concentrations in
patients with T1DM is derived. However, in all cases, as
the prediction horizon increases, the models’ predictive per-
formance deteriorates. There is a need for applying more
sophisticated techniques in order to capture the metabolic
behavior of a patient with T1DM.

In this paper we investigate the performance of 4 different
techniques for predicting glycemia in T1DM patients. We
use data collected from real patients, namely insulin doses,
glucose values measured by a continuous glucose monitoring
system (CGMS) and the estimated number of carbohydrates
eaten in each meal. We compare non-linear regression with a
fixed model structure, identification of prognosis models by
symbolic regression using genetic programming (GP), prog-
nosis by k-nearest-neighbor time series search (kNN), and
identification of prediction models using grammatical evo-
lution (GE). Predictions are calculated for the next 30, 60,
90, and 120 minutes.

Experimental results show that symbolic regression and
kNN time series techniques obtained good results in terms
of correlation on test samples, especially in the 30-minutes
horizon. We have identified models with GE for each of
the main meals of a day (breakfast, lunch, and dinner) with
good results in the test phase for some of the models reaching
correlations above 0.9.

The rest of the paper is organized as follows: In Section
2 we describe the techniques and algorithms compared in
this paper. Section 3 describes the results with all the four
approximations for 3 real female patients. Finally, Section
4 summarizes the conclusions of this work.

2. MODELING TECHNIQUES
The goal of this research is to find customized mathe-

matical models that predict future glucose levels (gluc) on
the basis of current and past glucose levels, past and fu-
ture carbohydrate intakes (ch), and past and future insulin
injections (ins) for a given DM patient:

futuregluc(t) = f(gluc(t− 2h . . . t),

ch(t− 2h . . . t+ 2h), ins(t− 2h . . . t+ 2h), t) (1)

In this section we describe the applied algorithms, espe-
cially how they treat the given data and how they identify
models.

2.1 Non-linear Regression with Fixed Model
Structure

Before trying more sophisticated time series prognosis
methods we trained a non-linear regression model with a
predefined model structure. In this model we used a Bate-
man function to model smooth uptake of carbohydrate and
insulin. In this model we assume that the glucose level can
be modeled solely as a a linear combination of smoothed
carbohydrate (ch) and insulin (ins) inputs. Thus the model
assumes the glucose level at time t depends solely on all in-
takes of ch and ins up to time t (inclusively). It should be
noted that we are not trying to create a biologically accu-
rate model but the model could still lead to relevant insights
regarding the rate of insulin and carbohydrates uptake and
breakdown.

gluct = θ1

t∑
i=1

chiBα1,β1(t− i)︸ ︷︷ ︸
ch′(t)

+θ2

t∑
i=1

insiBα2,β2(t− i)︸ ︷︷ ︸
ins′(t)

+θ3

Since we are combining the smoothed inputs in a linear
model we used a slightly modified variant of the Bateman
function:

Bα,β(d) =
1

β − α (e−αd − e−βd)

We optimized parameters α and β using covariance matrix
adaptation evolution strategy (CMAES) [10]. The parame-
ter vector θ is fit using least-squares regression for fixed α
and β. The objective function for CMAES is the root of
mean of squared errors (RMSE).

For a more efficient calculation of ch′(t) and ins′(t) in one
pass over the dataset we split the Bateman function into two
terms

ch′(t) =

t∑
i=1

chi
1

β − α (e(−α(t−i)) − e(−β(t−i)))

=
1

β − α (

t∑
i=1

chie
−α(t−i)

︸ ︷︷ ︸
ch′
α(t)

−
t∑
i=1

chie
−β(t−i)

︸ ︷︷ ︸
ch′
β
t

)

and use a recursive form incremental calculation of ch′α
and likewise for ch′β , ins′α and ins′β

ch′α(1) = ch1

ch′α(t) = ch′α(t− 1)e−α + cht , t > 1
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Figure 1: Fixed model outputs for one of the pa-
tients under study.

Figure 1 shows an example output for the fixed model for
one of the patients under study. The smoothed functions
based on insuline input and carbohydrate input are added
to produce the prediction.

2.2 Identification of Prognosis Models by
Symbolic Regression

Amongst other possibilities, we apply symbolic regression
using genetic programming (GP) with strict offspring selec-
tion (OS) as described in [18] and [2]. The functions set de-
scribed in [18] (including arithmetic as well as logical ones)
was used for building composite function expressions.

Applying offspring selection has the effect that new indi-
viduals are compared to their parents; in the strict version,
children are passed on to the next generation only if their
quality is better than the quality of both parents. Figure 2
shows GP with OS as used in the research discussed here.

In addition to splitting the given data into training and
test data, we apply GP in such a way that a part of the given
training data is not used for training models and serves as
validation set (VAL); in the end, when it comes to returning
the eventual results, the algorithm returns those models that
perform best on validation data. This approach has been
chosen because it helps to cope with over-fitting; it is also
applied in other GP based machine learning algorithms as
for example described in [4].

We use GP as implemented in HeuristicLab [17, 11], a
framework for prototyping and analyzing optimization tech-
niques in which evolutionary algorithms as well as numer-
ous machine learning algorithms and analysis functions are
available. Figure 3 shows GP solving a regression problem
in HeuristicLab 3.3.

In detail, our goal is to identify models for the following
target variables that describe the future glucose values for
time t:1

glucf30(t) = gluc(t+ 30min) (2)

glucf60(t) = gluc(t+ 60min) (3)

glucf90(t) = gluc(t+ 90min) (4)

glucf120(t) = gluc(t+ 120min) (5)

1The subscript “f...” here denotes future values, where as
the subscript “h...” denotes previously recorded (“history”)
values.

For time t we define the following set of features F (t) that
describe the history of the time series (glucose, insulin, and
carbohydrates) until t as well as the future intakes of insulin
and carbohydrates:

F (t) = Fgluc(t)∪Fins hist(t)∪Fins fut(t)∪Fch hist(t)∪Fch fut(t)
(6)

The exact definition of the feature sets is given in the
appendix.

Thus, our concrete goal here is to identify models that
describe the future glucose values of time t as

glucf30(t) = ff30(F (t)) (7)

glucf60(t) = ff60(F (t)) (8)

glucf90(t) = ff90(F (t)) (9)

glucf120(t) = ff120(F (t)) (10)

Population of

Models

!

Parents Selection

Test (Evaluation)

of Models

Offspring 

Selection

!

x+

xx
*

x *

xx

!
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x *

xx

Generation of New 
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Figure 2: Genetic programming with offspring se-
lection [18].

Figure 3: Solving a regression problem by symbolic
regression using genetic programming in Heuristic-
Lab 3.3.
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2.3 Prognosis by k-Nearest-Neighbor Time
Series Search

As an alternative we apply a model free approach for fore-
casting glucose values: For predicting glucose values for time
stamps tfuture > t we look for similar situations, i.e. data
snapshots that can be considered similar to the data at time
t. In detail, we look for similar situations that were recorded
previously, for which we recorded similar current and past
glucose levels, past and future carbohydrate intakes, and
past and future insulin injections. I.d., we use a k-nearest
neighbor approach [3] and look for time series that are most
similar to the current time series (of the features described in
the previous section), and predict the average of the further
progresses of those similar time series as the future glucose
values from t on.

First, before similar situations can be searched we nor-
malize all features X to mean 0.0 and variance 1.0:

Xnorm = (X − avg(X))/std(X) (11)

The distance of two situations at times t1 and t2 (i.e. data
samples s(t1) and s(t2)) can be calculated as the weighted
squared difference of the samples’ feature values, the differ-
ence according to each feature is weighted with a constant
factor wi:

dist(s(t1), s(t2), w) = dist(F (t1), F (t2), w) =∑
wi∗(Fnorm(t1)[i]−Fnorm(t2)[i])

2∑
i wi

(12)

Given a set of training data time stamps TR we look for
the k nearest neighbors for sample s(t) as those that have a
smaller distance to the target sample than the other samples:

nn(t, w, k, TR) : |nn(t, w, k, TR)| = k ∧
∀i,j∈TR : (i ∈ nn(t, w, k, TR) ∧ j /∈ nn(t, w, k, TR))

⇔ dist(t, i, w) < dist(t, j, w) (13)

The future glucose progress from time t on is denoted
as future(t). The estimated future glucose progress is the
average of the progresses of the similar situations, where
each progress p is shifted by an offset o that is calculated as
the difference of gluc(t) and the first glucose value of p:

future(t) = [gluc(t), gluc(t+ 5min),

gluc(t+ 10min), . . . , gluc(t+ 120min)] (14)

o(t1, t2) = gluc(t1)− gluc(t2) (15)

prognosis(t, w, k, TR) =
1
k
∗
∑k
i=1(future(nn(t, w, k, TR)i) +

o(t, nn(t, w, k, TR)i)) (16)

Figure 4 shows an example: The glucose values are known
until time t, and the three most similar time series for s(t)
are identified. The average of these nearest neighbors’ pro-
gresses is calculated as the prediction for futuregluc(t).

The quality of a prognosis for time t can thus be defined
as

quality(prognosis(t, w, k, TR)) =
1
n

∑n
i=1((prognosis(t, w, k, TR)i − future(t)i)2) (17)

And using these definitions we can define the calculation
of the quality of a combination of the number of nearest
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the average of the three nearest neighbors’ pro-
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neighbors k and the weightings set w as

quality(w, TR, V AL) =
1

|V AL|
∑
t∈V AL quality(prognosis(t, w, k, TR)) (18)

For the test series documented in this paper we optimized
k and w using a (µ+ λ) evolution strategy [14, 15]:

Initially, µ solution candidates [k,w] are created with
k ∈ {1 . . . 10} and wi drawn from N (1, 0.5). In each gener-
ation we create λ solution candidates by drawing randomly
from the generation and mutating the chosen parent solu-
tion; each weight wi of the mutant is calculated as the par-
ent’s wi plus a value drawn from N (0, σ), and k is either
reduced by 1, increased by 1, or remains unchanged. The
mutation strength parameter σ is in each generation adapted
in dependence of the mutations’ success: σ is increased (mul-
tiplied with 1.1) if more than 20% of the mutations lead to
better solution quality, and σ is decreased (divided by 1.1)
if the ratio of successful mutations is below 20%.

In each generation the µ best individuals are drawn from
the λ new solution candidates and the previous generation’s
candidates.

2.4 Grammatical Evolution
Another evolutionary approach we propose is based on

grammatical evolution (GE; [13], [6]). GE is a grammar-
based form of GP that combines principles from molecular
biology to the representational power of formal grammars.
In brief, the population is formed by a set of individuals
denoted by chromosomes, whose phenotypes are obtained
after a decoding process guided by the grammar. Besides,
the chromosome-based representation allows the use of tra-
ditional genetic operators instead of operating on solution
trees, as in standard GP.

In the case of modeling the glycemia of diabetic patients,
the phenotype of an individual will be the model expression
for prognosis. Therefore, we have defined a grammar to
guide the optimization process toward a model expression
for prediction. In short, the grammar considers that the
prediction for time t may depend on the previous values of
glucose, carbohydrates ingestion and insulin injection.
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# Model expression
<func > ::= <exprgluc > + <exprch > - <exprins >

# Glucose
<exprgluc > ::= (<exprgluc > <op> <exprgluc >) | <preop >

(<exprgluc >) | (<cte > <op> <exprgluc >)
| predictedData(t-<idx
>) | realData(t-<idx2hOrMore >)

# CH
<exprch > ::= (<exprch > <op> <exprch >)

|<preop > (<exprch >)
|(<cte > <op> <exprch >)
|( getPrevData (1,t,1) * <cte > * <curvedCH >)

# Insulin:
## Sum of insulins in past 2h minus the peak
## Curve for the peak in past 2h
<exprins > ::= (<exprins > <op> <exprins >)

|<preop > (<exprins >)
|(<cte > <op> <exprins >)
|getVariable (2,t-<idx >)

<op> ::= +| -|*|/
<preop > ::= Math.exp|Math.sin|Math.cos|Math.log
<cte > ::= <base >*Math.pow(10,<sign ><exponent >)
<base > ::= 1|2|3| .. |97|98|99
<exponent > ::= 1|2|3|4|5|6|8|9
<sign > ::= +|-
<idx > ::= <dgtNoZero >|<dgtNoZero ><dgt >|<dgtNoZero ><

dgt ><dgt >
<dgtNoZero > ::= 1|2|3|4|5|6|7|8|9
<dgt > ::= 0|1|2|3|4|5|6|7|8|9
<ZeroOneTwo > ::= 0|1|2

Figure 5: An extract of the grammar developed for
the extraction of models of glycemia.

The GE algorithms applied in this research are imple-
mented in Java using the ABSys JECO library [1]. In ad-
dition, we have followed the approach of compilable pheno-
types [8], which allows the inclusion of Java executable code
as part of the phenotype in order to speed up the evaluation
of individuals.

Figure 5 shows an extract of the rules that have been
defined in our grammar. Next, we detail the most impor-
tant ones. We construct a grammar searching for an expres-
sion based on glucose (<exprgluc>), plus some expression
regarding carbohydrates (<exprch>), minus an expression
of insulin (<exprins>). The expression of glucose denoted
by exprgluc is a recursive rule that may produce a com-
plex formula using arithmetic operators (<op>), functions
(<preop>) and constant values (<cte>) which, in our case,
are generated through a base and an exponent built with
integer values.

The glucose expression works with a prediction window
of 2 hours. Therefore, the terminal values can be either the
predicted value within the window, or the real data before
this window. This behavior is obtained with functions pre-

dictedData and realData, and the indexes that are formed
for them: <idxCurr2h> and <idx2hOrMore>. Notice that the
dataset provides data in a 5 minutes’ basis, therefore, t-24
means 2 hours ago.

Figure 5 shows some of the non-terminal symbols related
to operators and auxiliary indexes such as <op>, <preop>,
etc.

As can be seen, the proposed grammar defines models that
work in a window of 2 hours for prediction. Hence, in the
training phase we have considered slots of 4 hours where the

Figure 6: Training process in the GE approach for
one patient.

Parameter Value
Population 250
Generations 2500
Crossover probability 0.7
Mutation probability 0.01

Table 1: Algorithm parameters for training in GE.

last 2 hours of data are predicted. We have divided the data
of each patient’s day into six slots of 4 hours starting at 0:00
h. (12:00 am). Then, we have selected the slots that include
one of the principal meals, which are breakfast, lunch and
dinner, in order to obtain more accurate results.

The training phase consists of randomly selecting 5 days
from each patient. Then, we run GE 10 times for each one
of the selected slots of each day. Therefore, for each patient
we have 50 models per meal, that is, a total of 150 models
after training.

The value of the parameters of the genetic algorithm used
in the training phase were selected after a set of preliminary
experiments. Table 1 shows these values.

Figure 7 shows an example of training where a model is
obtained for breakfast in one day for patientA. The figure
shows the prediction for the last 24 data and, in this case,
the model is very accurate.

In order to reduce the number of models, we have run a
validation phase that follows the same idea. We have ran-
domly selected 2 days and, for each of the slots correspond-
ing to the three main meals, we have evaluated the models
obtained in the training phase. After that, we have selected
the 5 best models for each day according to the RSME value
obtained. Hence, after the validation we have 10 models for
each meal for each patient.

3. TEST RESULTS

3.1 Datasets
We work with the data of three real patients that we will

keep anonymous. We will call them patientA, patientB and
patientC. All the three are women, their average age is 38
years. The data were collected from a system formed by a
CGMS and an insulin pump attached to the patient’s body.
Measures of both variables were taken each 5 minutes, and
carbohydrate ingestions were also annotated and collected.
In this dataset we have at least 10 complete days of data
for each patient. These days are not necessarily consecutive
neither the same days for the three patients.
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Figure 7: Evaluation of a breakfast model from
training with 4 hours of data (48 values on x-axis)
from patientA using GE. Glucose is denoted as y and
prediction is denoted as yp.

Once the training phase was performed, we have tested
the models that each one of the proposed techniques have
generated.

3.2 Analysis
For the fixed model structure (FM), the complete dataset

was divided into two halves. One half was used for training
and the other half of the data was used for testing. In order
to compare the algorithms, the correlation coefficient (ρ)
was calculated between the original and prediction values.
The ρ values were calculated for each patient separately as
we tuned the model parameters for each patient separately.
For the prediction of glucose at time t only the values of
carbohydrates and insulin up to time t have been used, as
indicated in the equation describing the model, described in
Section 2.1.

In the case of GP and kNN, the correlation coefficient was
calculated in the same way, but using the estimations given
by the models. In GP and kNN the estimated values are
obtained as the average of the models’ outputs for t + 30,
t+ 60, t+ 90, and t+ 120.

Table 2 shows the correlation of original glucose values and
glucose estimations calculated by models identified by FM
as well as GP, and kNN, which are very good for short-term
predictions. Figure 8 shows the scatter plot of predictions
for patientA using GP, for which the best estimation (in
terms of correlation) was identified.

In the case of GE, the test phase was made in a different
way. We randomly selected two days of data for each patient.
On each day, we have taken the time slot corresponding
to a meal, and we have evaluated the models obtained in
the validation for the given patient. After that, we have
calculated, for each time t, the mean of the values given
by the models which were within the range (0, 400]. This
range is established by the limits of actual glucose monitors.
Therefore, we consider that any prediction outside of that
range is not valid.
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Figure 8: Overview of original vs. estimated future
glucose values for patientA. Estimated values are
calculated using models identified by GP.

Breakfast Lunch Dinner

patientA
Day 1 0.91 -0.827 0.182
Day 2 0.945 0.399 -0.415

patientB
Day 1 0.513 0.883 0.97
Day 2 -0.172 0.896 -0.962

patientC
Day 1 0.872 -0.658 0.961
Day 2 0.45 0.086 0.949

Table 3: Correlation (ρ) of the original values and
the values estimated as the average of models ob-
tained with GE.

The correlation values for the predictions are shown in Ta-
ble 3. It can be seen that, in general, some models are not
very accurate. Negative correlations mean that the relation-
ship between the actual value and the prediction is inverse
(if one grows, the other decreases). However, we obtained
several values (given in bold font in the table) which are
very good. In fact, the Breakfast models for patientA and
the Dinner models for patientC are better than the models
derived by GP and kNN.

Figure 9 shows the scatter plot of predictions for patientB
using the GE average model for dinner on day of testing,
which presents the best estimation in terms of correlation.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have presented four different techniques

to obtain expressions to model the glycemia of diabetic pa-
tients. We have worked on a set of data that was collected
from three real patients who provided glycemia levels, in-
sulin doses, and carbohydrate ingestions.

First, we have described a non-linear regression with fixed
model structure, which obtained low values of correlation in
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glucf30(t) glucf60(t) glucf90(t) glucf120(t)

patientA
GP 0.921 0.783 0.638 0.504

kNN 0.908 0.707 0.492 0.319
FM 0.367 0.367 0.367 0.367

patientB
GP 0.913 0.790 0.681 0.555

kNN 0.880 0.679 0.507 0.373
FM 0.537 0.537 0.537 0.537

patientC
GP 0.902 0.778 0.669 0.586

kNN 0.846 0.644 0.492 0.352
FM 0.43 0.43 0.43 0.43

Table 2: Normal correlation coefficient (ρ) between the original and the estimated values in different prediction
horizons: t+ 30, t+ 60, t+ 90 and t+ 120 minutes.

Figure 9: Overview of original vs. estimated future
glucose values for patientB using the dinner model
produced by GE on test day 1.

the test phase. However, we take this technique as a base-
line to be improved. Second, we applied genetic program-
ming based symbolic regression and k-nearest-neighbor time
series search to the dataset. Both techniques obtained good
results in terms of correlation on test samples, especially
within a 30-minutes horizon where the correlation of origi-
nal and estimated prognoses is > 0.84. Finally we applied
grammatical evolution and identified models for each of the
main meals of a day, namely breakfast, lunch and dinner.
These results are very good in the test phase for some of the
models, reaching correlations above 0.9.

As future work we will try to advance in the proposed
strategies, given that this the beginning of our work with
data from real patients. In addition, we will try to intro-
duce more input variables into the patients’ data such as
information about the meals, the level of stress, activities,
and the number of hours spent sleeping.
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Appendix
Definition of feature sets:

Fgluc(t) = { (19)

gluch15(t) = avg(gluc(t− 10min), . . . , gluc(t− 20min)),

gluch30(t) = avg(gluc(t− 25min), . . . , gluc(t− 35min)),

gluch45(t) = avg(gluc(t− 40min), . . . , gluc(t− 50min)),

gluch60(t) = avg(gluc(t− 55min), . . . , gluc(t− 65min)),

gluch2h(t) = avg(gluc(t− 70min), . . . , gluc(t− 120min)),

gluch3h(t) = avg(gluc(t− 125min), . . . , gluc(t− 180min)),

}

Fins hist(t) = { (20)

insh15(t) = avg(ins(t− 10min), . . . , ins(t− 20min)),

insh30(t) = avg(ins(t− 25min), . . . , ins(t− 35min)),

insh45(t) = avg(ins(t− 40min), . . . , ins(t− 50min)),

insh60(t) = avg(ins(t− 55min), . . . , ins(t− 65min)),

insh2h(t) = avg(ins(t− 70min), . . . , ins(t− 120min)),

insh3h(t) = avg(ins(t− 125min), . . . , ins(t− 180min)),

}

Fch hist(t) = { (21)

chh15(t) = avg(ch(t− 10min), . . . , ch(t− 20min)),

chh30(t) = avg(ch(t− 25min), . . . , ch(t− 35min)),

chh45(t) = avg(ch(t− 40min), . . . , ch(t− 50min)),

chh60(t) = avg(ch(t− 55min), . . . , ch(t− 65min)),

chh2h(t) = avg(ch(t− 70min), . . . , ch(t− 120min)),

chh3h(t) = avg(ch(t− 125min), . . . , ch(t− 180min)),

ch(t), ins(t), gluc(t),

}

Fins fut(t) = { (22)

insf15(t) = avg(ins(t+ 5min), . . . , ins(t+ 15min)),

insf30(t) = avg(ins(t+ 20min), . . . , ins(t+ 30min)),

insf45(t) = avg(ins(t+ 35min), . . . , ins(t+ 45min)),

insf60(t) = avg(ins(t+ 50min), . . . , ins(t+ 60min)),

insf75(t) = avg(ins(t+ 65min), . . . , ins(t+ 75min)),

insf90(t) = avg(ins(t+ 80min), . . . , ins(t+ 90min)),

insf105(t) = avg(ins(t+ 95min), . . . , ins(t+ 105min)),

insf120(t) = avg(ins(t+ 110min), . . . , ins(t+ 120min)),

}

Fch fut(t) = { (23)

chf15(t) = avg(ch(t+ 5min), . . . , ch(t+ 15min)),

chf30(t) = avg(ch(t+ 20min), . . . , ch(t+ 30min)),

chf45(t) = avg(ch(t+ 35min), . . . , ch(t+ 45min)),

chf60(t) = avg(ch(t+ 50min), . . . , ch(t+ 60min)),

chf75(t) = avg(ch(t+ 65min), . . . , ch(t+ 75min)),

chf90(t) = avg(ch(t+ 80min), . . . , ch(t+ 90min)),

chf105(t) = avg(ch(t+ 95min), . . . , ch(t+ 105min)),

chf120(t) = avg(ch(t+ 110min), . . . , ch(t+ 120min))}
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