
Code Fragments: Past and Future use in Transfer Learning

Will N. Browne
Victoria University of Wellington, New Zealand,

will.browne@vuw.ac.nz

ABSTRACT
Code Fragments (CFs) have existed as an extension to Evo-
lutionary Computation, specifically Learning Classifiers Sys-
tems (LCSs), for half a decade. Through the scaling, ab-
straction and reuse of both knowledge and functionality that
CFs enable, interesting problems have been solved beyond
the capability of any other technique. This paper traces
the development of the different CF-based systems and out-
lines future research directions that will form the basis for
advanced Transfer Learning in LCSs.

CCS Concepts
•Computing methodologies → Machine learning al-
gorithms;

Keywords
Code Fragments, Transfer Learning

1. CODE FRAGMENTS
The need for Code Fragments (CFs) arose when applying

the evolutionary computation (EC) technique of Learning
Classifier Systems (LCSs) to data mining, when it was not
possible to discover rules linking higher-order ‘abstracted’
information about input variables. Follow-on work showed
that abstract rules in the toy problem of ‘Connect 4’ could
be learned in a bottom-up manner, but this required two
interacting systems.
The ability to manipulate low-level schema has been con-

sidered implicit in the successful functioning of EC approaches.
Such building-blocks of knowledge have been explicitly iden-
tified through Automatically Defined Functions (ADFs) in
Genetic Programming. However, ADFs are formed in a top-

down manner, i.e. complete solutions first, which can be
hard to discover. CFs are similar to a ADFs in terms of
being small sub-trees of GP-like syntax, but they are
formed in a bottom-up manner and restricted to be of
depth two initially.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prof t or commercial advantage and that copies bear this notice and the full citation
on the f rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO’16 Companion July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4323-7/16/07.
DOI: http://dx.doi.org/10.1145/2908961.2931737

CFs were not the first approach to adopt GP-like syntax
(including S-expressions) into the LCS framework, but the
main purpose is different from feature selection or output
computation. The purpose is to reuse CFs as building-blocks
of knowledge from small problems to improve learning in
larger-scale problems of the same domain or in a related do-
main. Furthermore, CFs can now include building-blocks of

functionality through reusing learned rule-sets as functions,
which also include their own CFs.

It is noted also that multimodal and dynamic domains
reuse learnt solutions, but these keep whole solutions for
reuse. Here, CFs are part solutions or even whole solutions
(rule-sets) form sub-parts of other CFs.

CFs are embedded into the LCS framework due to its
cognitive systems roots for learning and practical considera-
tions. Thus the flexible reinforcement learning LCS, XCS, is
the base framework, but alternatives, such as the supervised
approaches, can be adapted.

XCSCFC is the primary CF-based system, replacing tra-
ditional conditions with CFs to indicate a matched state. It
scales to problems in a similar domain by reusing learnt CFs
as blocks of knowledge, e.g. scaling from 6-bits up to 135-bit
Multiplexer problems (MUX).

XCSCFA utilises CFs in the action for a computed action-
like system. This demonstrated the importance of consis-
tency underlying CF-based learning that leads to compact
solutions avoiding bloat and redundant classifiers.

XCSSMA encoded Finite State Machines as actions, which
can encode ‘loop’ patterns, enabling generic (n-bit) solutions
to problems, e.g. even parity.

XCSCF2 was the first to include CFs and Code-functions
through reusable rule-sets, with associated CFs, bootstrap-
ping learning. Long chains of rules, CFs, associated func-
tions and so forth can be reduced using distilled rules.

XCSCF* using a layered-learning approach where in-
stead of an experimenter specifying the problem & system
parameters & system functions, they specify a sequence of
problems & system parameters only as the needed functions
are sub-problems in the sequence. This generated a general,
i.e. any n-bit, solution for MUX for the first time.

Although more functions than required can exist, it is still
a human ordered sequence. Future work will parallelise un-
ordered problems such that when their learning is complete
the learnt functionality and CFs will be transferred (become
available) to currently uncompleted problems.

1.1 Acknowledgments: Co-authors
Dan Scott, Charalambos Ioannides, Muhammad Iqbal,

Mengjie Zhang, Isidro M. Alvarez, Syed Saud Naqvi, Yi Liu.

1405




