
Hands-on Workshop on Learning Classifier Systems 

Ryan J. Urbanowicz 
University of Pennsylvania 

Philadelphia, PA, USA 
ryanurb@upenn.edu 

Will N. Browne 
Victoria University of Wellington 

Wellington, NZ 
will.browne@ecs.vuw.ac.nz

Karthik Kuber 
Microsoft 

Redmond, WA, USA 
karthik.kuber@microsoft.com 

 
ABSTRACT 
We will present a hands-on lab to learn the concept and use of 
Learning Classifier Systems (LCSs)   

Keywords: Learning Classifier Systems, Educational LCS, eLCS 

1. INTRODUCTION AND SETUP 
Welcome to the Educational Learning Classifier System (eLCS). It 
has the core elements of the functionality that help define the 
concept of LCSs. It’s the same family as the fully featured 
ExSTraCS [1] system, so it is easy to transfer to a state-of-the-art 
LCS from this shallow learning curve. 

eLCS complements the forthcoming Textbook on Learning 
Classifier Systems [2]. Each demo is paired with a corresponding 
section in the textbook. Therefore, there are 5 different versions of 
an educational learning classifier system (eLCS), as relevant 
functionality (code) is added to eLCS at each stage. This builds up 
the eLCS algorithm in its entirety from Demo 1 through to 5. Demo 
6 showcases how ExSTraCS may be applied to a real-world data 
mining example, i.e. large scale bioinformatics. (1) LCS in a 
Nutshell: Understanding of what an LCS is attempting – how does 
it classify the training data?, (2) LCS Concepts: Matching and 
Covering, (3) LCS Functional Cycle: Prediction, Rule Population 
Evaluations, GA Rule Discovery, Parental Selection and Deletion, 
(4) LCS Adaptability: Niche GA + Subsumption, (5) LCS 
Applications: Complete eLCS applied to a complex (toy) problem, 
(6) ExSTraCS applied to a real-world data mining example. 

Example domains are simple initially. The configuration files may 
be edited, to change run parameters, but initially they should be set 
to run on their own. All code is in Python version 3.4 or later. Here 
it is to be run in the Jupyter platform (http://jupyter.org/), as it 
supports interactive data science. [Note eLCS was originally coded 
outside of Jupyter in Eclipse using Python 2.7 and Python 3.4 
separately, both of which are available for download [3]. Keep in 
mind that eLCS coded in Python 2.7 requires Python 2+ code will 
not function in Python 3+.  These alternate implementations may be 
run by calling eLCS Run.py.].  

Each demo includes the minimum code needed to perform the 
functions they were designed for. This way users can start by 
examining the simplest version of the code and progress onwards.   
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. Copyrights for components of 
this work owned by others than the author(s) must be honored. Abstracting 
with credit is permitted. To copy otherwise, or republish, to post on servers or 
to redistribute to lists, requires prior specific permission and/or a fee. Request 
permissions from permissions@acm.org. 
GECCO'16 Companion, July 20 - 24, 2016, Denver, CO, USA 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-4323-7/16/07…$15.00  
DOI: http://dx.doi.org/10.1145/2908961.2931738 

 
The demo exercises are to implement several functions in eLCS and 
view results in a spreadsheet, text file or Python based graphics 
(preferable).    Please set-up Jupyter with Python 3.5 [4]. Please also 
download eLCS_1.ipynb, … , eLCS_5.ipynb from [3]. 

2. DEMOS 
2.1 LCS in a Nutshell  
Firstly, check that the basic eLCS, eLCS_1.ipynb, is running in 
Jupyter -the “Hello LCS” input code produces an appropriate 
output when it is run (play button pushed, when input 
highlighted). 

2.1.1 Rule population 
The purpose of an LCS is to classify, which it does through a 
population rules. We have included, as a rule population example, 
a real run of the complete (Demo 5) eLCS after 5000 iterations 
(eLCS has learned the problem already with perfect accuracy) 
(see ExampleRun eLCS 5000 RulePop.txt). We have removed 
some of the rule parameters columns to keep this example as 
simple as possible. Users will be directed to examine specific 
rules, encouraged to open the rule population in Excel, and try 
sorting rules by numerosity, accuracy, or initial time stamp in 
order to examine basic rule properties. Instead of manually 
selecting a small set of rules to include as an example rule 
population for this first Demo, it is good to be initially exposed to 
what a complete rule population might look like.  

Conditions in the rules included (A 0, A 1, R 0, R 1,R 2, and R 3), 
making up the multiplexer problem address (A) and register (R) 
bits. Class is labelled as Phenotype, since eLCS handles both 
discrete and continuous endpoints, which are better generalized as 
a phenotype. Also included in the file are the following rule 
parameters: fitness, accuracy, numerosity, TimeStamp, Initial 
TimeStamp, and Specificity (i.e. the fraction of specified attributes 
in a given rule). The rule population is initially ordered by initial 
Time Stamp, i.e., the iteration in which the rule was originally 
introduced to the population. 

2.2  LCS Concepts 
2.2.1 Matching and Covering  
The first version of eLCS is extremely basic (i.e. Demo 2). While 
the later versions of eLCS include code to load a configuration file, 
to set run parameters, as well as code to manage an offline 
environment (load and manage a finite dataset), this first version of 
eLCS, pretty much only includes the framework of an LCS, i.e. the 
code to form a population, a match set, a correct set and to construct 
a classifier.  Because of their link, we introduce both matching and 
covering together.  When run, this version will apply covering to  
initially add rules to the population until some random set of rules, 
covers all instances in the dataset. The code is set to initially run for 
64 iterations (i.e. one cycle through the dataset). 

1407



Alternatively, this version can reboot, i.e. load, an existing rule 
population, to demonstrate matching more completely. To reboot a 
population, go into the configuration file and change 
doPopulationReboot from 0 to 1. In this case, covering will not kick 
in as all instances should already be covered. Instead, all matching 
rules will be displayed.  

We have encoded this version to use print statements to show 
what’s going on in the algorithm regarding covering and matching. 
Each iteration, the dataset instance is displayed, followed by any 
matching rules, as well as any covered rules if covering is activated. 
The iteration ends with a print out of the iteration number, the 
current population size and the average rule generality. 

2.3 LCS Functional Cycle  
In an LCS, not all rules match every instance. Not all rules are 
perfect when created. An accurate, maximally general rule 
population (the solution) needs to be evolved. 

2.3.1 Prediction and Rule Population Evaluations 
 In the Demo 3 version, we have added the prediction array, which 
allows tracking accuracy of the rule population as an estimate of 
prediction accuracy, over the last n iterations where n is the tracking 
frequency (set to the dataset size by default). Rule numerosity is 
also added to the algorithm at this point, since numerosity plays a 
role in prediction. However, since the only discovery mechanism in 
the system so far is covering, if we load an existing rule population, 
instead of running the algorithm from scratch, only a classifier 
numerosity of 1 is possible. This version is encoded to print 
statements showing the current instance in the dataset, all rules in 
the current matchset (including their respective fitnesses) and then 
the prediction vote for each class, along with the selected prediction. 
Readers can compare this prediction to the true phenotype of the 
current instance. 

2.3.2 GA Rule Discovery and Parental Selection 
Demo 3 introduces a panmictic GA for rule discovery including 
parental selection (tournament or roulette wheel selection are 
options), mutation, and uniform crossover. Also we introduce code 
for two key output files (a print out of the saved rule population, as 
well as a file with population summary statistics). They are included 
in this and the following implementations, as it is the first time that 
eLCS can learn anything interesting enough to be saved and 
explored. This is also the first time that code for complete rule 
population evaluations is included. Complete evaluations are 
included at learning checkpoints, specified in the parameter 
learningIterations in the configuration file. Note that there is no 
deletion mechanism yet, so the population size blows up pretty 
quickly, but the algorithm still works, able to obtain perfect 
prediction accuracy within 10,000 iterations. 

2.3.3 Deletion 
Demo 3 adds the deletion mechanism, which operates panmictically 
as well. This demo shows the key role of deletion in the LCS 
algorithm, reducing rule population bloat, keeping learning 
iterations as fast as possible, and the rule population manageable. 
This version can obtain perfect accuracy on the 6-bit multiplexer 
problem in under 5,000 iterations. 

Further, off-line exercises: 1) Adjust the explore/exploit balance to 
observe the performance reached and convergence times. 2) Graph, 
tabulate and visualize the results, including training performance. 3) 
Interpret and understand the results. 4) Summarize learning in a 
table, including valid statistical tests if comparing methods. 5) 
Observe patterns in extracted knowledge. 6) Implement adaptive 
mutation, then various forms of crossover and then a novel method.  

Note: panmictic means unconstrained throughout the population, 
rather than restricted to local (neighboring) sets. 

2.4 LCS Adaptability  
2.4.1 The Complete Algorithm: Niche GA + Subsumption 
This final version of eLCS (Demo 4) puts everything together and 
adds some additional bells and whistles to get a fully functional 
eLCS algorithm for supervised learning from any kind of dataset. 
Two key differences include: (1) This version switches to a niche 
GA (the GA operates in the correct set), as opposed to a panmictic 
one. Exercise: compare the difference to where parents of future 
rules are selected. (2)  The subsumption mechanism (performs both 
correct set, and GA based subsumption) has been added to eLCS. 
Exercise: explain why certain rules are subsumed and by what 
classifiers? 

Additionally, we have added methods for handling balanced 
accuracy calculations to accommodate unbalanced, and or 
multiclass datasets. Also included is a Timer method, which tracks 
the global run time of the algorithm, as well as the run time used by 
different major components of the algorithm. This final version can 
solve the 6-bit multiplexer problem in under 2000 iterations. 

2.5 LCS Applications    
2.5.1 Toy problem using eLCS 
This complete version of eLCS is most similar to the UCS 
algorithm [5]. We have used the complex but toy multiplexer 
problem: 6Multiplexer Data Complete.txt, however we have also 
included the complete 11-bit multiplexer (11Multiplexer Data 
Complete.txt), and a 2000 instance dataset sampling the 20-bit 
multiplexer problem (20Multiplexer Data 2000.txt).  Exercise: Mess 
about with the parameter settings! 

a. Initially, one at a time. Get a feel for the effect of population 
size. Reset to a sensible size and then get a feel for a wide 
range of learning rates. Each time noting the classification 
performance trend as well as the final achieved performance.  

b. Combinations of parameters. Parameters that strongly 
interacting include: Population Size and P# (particularly for 
sparse problems such as the parity problem), Population size 
and genetic algorithm rate (see if you can get the covering loop 
problem to occur), Learning rate and error threshold ε0. 

2.6 Real problem using ExSTraCS 
A quick introduction to the ExSTraCS algorithm in contrast with 
the complete eLCS algorithm will be given. This will be followed 
with a discussion and demonstration of how this more advanced 
algorithm can be applied to a real world genetic analysis to find 
unique complex patterns. More information on ExSTraCS at [1,6]. 

3. REFERENCES 
[1] R. Urbanowicz, J. Moore: ExSTraCS 2.0: description and 

evaluation of a scalable learning classifier system. Evo. 
Intell. 8(2) (2015) 89-116 

[2] W. Browne, R. Urbanowicz: An Introductory Textbook on 
Learning Classifier Systems.  Springer.  In Preparation 

[3] Download eLCS: https://github.com/ryanurbs 
[4] Download Python:  https://www.python.org/downloads/ 
[5] E. Bernadó-Mansilla, J. Garrell-Guiu: Accuracy-based LCS: 

models, analysis and applications to classification tasks.  
Evo. Comp.11(3) (2003) 209-238 

[6] http://www.ryanurbanowicz.com/exstracs

1408




