Adaptive Parameter Selection in Evolutionary Algorithms
by Reinforcement Learning with Dynamic Discretization
of Parameter Range

Arkady Rost
ITMO University
Saint Petersburg, Russia
arkrost@gmail.com

ABSTRACT

Online parameter controllers for evolutionary algorithms ad-
just values of parameters during the run. Recently, a new ef-
ficient parameter controller based on reinforcement learning
was proposed by Karafotias et al. In this method parameter
ranges are discretized into several intervals before the run.
However, performing adaptive discretization during the run
may increase efficiency of an evolutionary algorithm. Aleti
et al. proposed another efficient controller with adaptive
discretization.

In this paper we propose a parameter controller based
on reinforcement learning with adaptive discretization. The
proposed controller is compared with the existing parame-
ter adjusting methods on different configurations of an evo-
lutionary algorithm. Results show that the new controller
outperforms the other controllers on most of the considered
test problems.
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1. INTRODUCTION

Efficiency of evolutionary algorithm (EA) depends on the
parameter choice. Values of the parameters can be set before
a run. However, as optimal values of algorithm parameters
may change over the course of the run, adaptive parameter
adjustment is required.

We consider parameters with continuous values. When
adjusting such parameters, parameter ranges are usually dis-
cretized into some intervals. Parameter ranges can be dis-
cretized a priori, in this case the chosen segmentation is kept
during a run. Dynamic discretization may improve algo-
rithm’s performance [1]. Aleti et al. proposed entropy-based
adaptive range parameter controller (EARPC) [1] which is
one of the most efficient controllers with dynamic discretiza-
tion [3].

Recently Karafotias et al. proposed another efficient pa-
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rameter controller [2,3] based on reinforcement learning (RL) [4].
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We call this method K-controller. Unfortunately, this method
was not compared to EARPC. In the K-controller a pri-
ori discretization is used. We propose two new methods
which combine RL and dynamic discretization. The first
of them combines the K-controller and EARPC. The sec-
ond one splits parameter ranges using RL and Kolmogorov-
Smirnov criterion.

2. PROPOSED METHODS

In the K-controller, dynamic state space segmentation is
used [2]. However, the ranges of the parameters being ad-
justed are discretized a priori. We propose to improve the
K-controller by using the EARPC method for dynamic dis-
cretization of parameter ranges. We call this method E+K.

Preliminary experiments showed that there was no signif-
icant improvement of the EA efficiency when many states
were used. Thus the second proposed method does not use
the dynamic state space segmentation, instead a single state
of the RL environment is used. The parameter range is
discretized using Kolmogorov-Smirnov criterion and it is re-
discretized if the expected rewards are close to each other for
all actions of the agent. We call this method KS+RL. The
detail(led description of the proposed methods is available at
arXiv'.

3. EXPERIMENTS AND RESULTS

We use (1 + M) evolution strategy. Mutation strength o is
the adjustable parameter. We expect that o should become
smaller as the global optimum is approached. The range of
o is [0,k], where k is a constant. As k grows, it becomes
harder to find the optimal value of o.

The average number of generations needed to reach the
optimum using different parameter controllers is presented
in Table 1. The first three columns contain values of EA
parameters k, u and A. The next 20 columns contain re-
sults of optimizing four functions with different landscapes:
Sphere, Rastrigin, Levi and Rosenbrock. For each function,
we present the results of the following parameter controllers:
the proposed method KS+RL (K+R), the Q-learning algo-
rithm (Q), the K-controller (K), the EARPC algorithm (E)
and the proposed method E+K (E+K). The last row con-
tains the total number of the EA configurations on which
the corresponding algorithm outperformed the other algo-
rithms. The gray background highlights the best result for
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Table 1: Averaged number of runs needed to reach the optimum using the proposed method KS+RL (K+R), the Q-learning
algorithm (Q), the K-controller (K), the EARPC algorithm (E) and the proposed method E+K (E+K)

Sphere function Rastrigin function Levi function Rosenbrock function

k(g |A K E E-+K] K E E+K K E E+K] K E E-+K|
1 (1 (1 8048 5258 4830 8385 |7794 |8689 7265 |7986 |14092 13418{9003 (12905
1 (1 (3 2683 13942 |3070 2069 3148 |3610 2903 2789 |3688 4167 |3553 |2701
111 |7 2620 |1653 (2247 1757 (1422 |1422 1600 (1923 (3820 2330 2296 |1941
1[5 (1 2076 4472 |3893 2281 (4341 |4530 1865 2246 2809 4453
1[5 (3 824 |1589 |845 942 |1958 |2197 2171 2749
1 |10 |1 747 1438 (728 1105 [2681 [2926 1451 1593 3085
1 (10 (3 358 534 400 665 1460 |1485 1134 616 1225
2 (1 |1 28523|31738|16182 21043|27865|19142 25721|30653 27239|20005|20819
211 |3 6478 |5152 |4233 6825 19748 |8997 4612 7169 |7166 |13342
2 1 |7 3739 |1688 2183 |3806 |4085 2967 2968 |5874 |7870
2 15 |1 3468 |4908 4029 5961 |5750 5365 5810 |11153|11856
2 15 |3 1163 |1631 1780 (2293 (1720 2943 2705 |3775 |4542
2 |10 |1 1833 2255 2411 |2807 3072 2787 |8768 4603
2 (103 465 1116 [1486 (1234 2381 1106 (3719 (1648
3 1 |1 29112 23305|24249|27327 28900|35119 36597|32533|43832
311 |3 9115 10726(6541 ({16040 10883 9873 |13061|10068
3 1 |7 4813 4266 |4144 |5408 2062 6462 |9797 |9775
315 |1 5886 5419 |5953 |7665 10480(9059 6791 |8952 |11581
315 |3 2222 2096 2823 (2304 3714 3673 4434 6799
3 |10 |1 2531 3258 15095 |3873 4814 6531 |8320 |10539
3 |10 |3 1206 1523 1028 2389 2611 (2479
Summary 0 0 1 0 0 2 0 0

Figure 1: Selected values of o by the K-controller (a) and proposed methods: KS+RL (b) and E4+K (c¢) on Rastrigin function.

each EA configuration. The KS+RL method outperformed
the other considered methods on most problem instances.

Fig. 1 shows values of o selected by the two proposed
methods and the K-controller during optimization of Ras-
trigin function. The horizontal axis refers to the current
iteration count, the vertical axis refers to the selected value
of 0. The selected o convergences to the optimal value in
the proposed method KS+RL (Fig. 1b). The other methods
do not seem to show such performance.

4. CONCLUSION

We proposed two parameter controllers which discretize
parameter range dynamically. One of the proposed meth-
ods is based on two existing parameter controllers: EARPC
and the K-controller. In the second approach the parame-
ter range is discretized using Kolmogorov-Smirnov criterion
and it is re-discretized if the expected rewards are close to
each other for all actions of the agent.

The proposed methods were compared with EARPC, the
K-controller and the Q-learning algorithm. We tested con-
trollers with 18 EA configurations on four test problems.
On most problem instances, the second proposed approach
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outperformed the other methods. This method improves
the parameter value during the whole optimization process
contrary to the other methods.

This work was partially financially supported by the Gov-
ernment of Russian Federation, Grant 074-U01.
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