
Visualisation and Analysis of Genetic Records Produced
by Cartesian Genetic Programming

Lukas Sekanina
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Brno, Czech Republic
sekanina@fit.vutbr.cz

Vlastimil Kapusta
Brno University of Technology

Faculty of Information Technology
Brno, Czech Republic

v.kapusta@email.cz

ABSTRACT
Cartesian genetic programming (CGP) is a branch of genetic
programming in which candidate designs are represented us-
ing directed acyclic graphs. Evolutionary circuit design is
the most typical application of CGP. This paper presents
a new software tool—CGPAnalyzer—developed to analyse
and visualise a genetic record (i.e. a log file) generated by
CGP-based circuit design software. CGPAnalyzer automat-
ically finds key genetic improvements in the genetic record
and presents relevant phenotypes. The comparison module
of CGPAnalyzer allows the user to select two phenotypes
and compare their structure, history and functionality. It
thus enables to reconstruct the process of discovering new
circuit designs. This feature is demonstrated by means of
the analysis of the genetic record from a 9-parity circuit evo-
lution. The CGPAnalyzer tool is a desktop application with
a graphical user interface created using Java v.8 and Swing
library.

CCS Concepts
•Human-centered computing → Visualization toolkits;

Keywords
Cartesian genetic programming, Digital circuit, Visualisa-
tion

1. INTRODUCTION
Visualisation methods have been adopted for understand-

ing of the search process conducted by evolutionary algo-
rithms (EA) since the introduction of EAs several decades
ago. The role of visualisation has grown in importance
with introducing genetic programming (GP) which is charac-
terized by complex genotype-phenotype mappings, difficult
search spaces and complex and often unusual phenotypes.

The most popular version of GP is tree-based GP. Various
software tools capable of visualising the GP search and GP

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20-24, 2016, Denver, CO, USA
c© 2016 ACM. ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931740

trees are available (see [6]). This paper deals with Cartesian
GP (CGP) which is concerned with the automatic evolution
of computational structures (such as mathematical equa-
tions, computer programs, digital circuits, etc.) encoded
as graph structures [13]. For CGP, however, only a few de-
sign or visualisation software tools have been developed (see
Section 3).

Evolutionary design of combinational circuits (i.e. digital
circuits in which the output values only depend on current
input values) is the most typical application of CGP. Cir-
cuits evolved and optimized by CGP showed in many cases
a significant improvement (e.g. in the number of gates) in
comparison with circuits optimized by the state of the art
logic synthesis and optimization tools [19]. It is important
to analyse and discover how these highly optimized circuits
are constructed by CGP in order to improve heuristic algo-
rithms used in conventional logic synthesis and optimization
tools.

The goal of this paper is to present a new software tool—
CGPAnalyzer—developed to analyse and visualise a genetic
record (i.e. a log file) generated by a CGP-based circuit de-
sign software. CGPAnalyzer automatically finds key genetic
improvements in the genetic record and presents phenotypes
(circuits) constructed on the basis of the genotypes stored
in the genetic record. The most important feature of CGP-
Analyzer is a comparison module which allows the user to
select two phenotypes and compare their structure, history
and functionality. The truth table can be computed not only
for the whole circuit but also for selected subcircuits which
undergo a detailed analysis.

As the tool is devoted to small combinational circuits, it is
assumed that the circuit response is analysed for all possible
input combinations in the fitness function. The specification
for CGP is thus given as a truth table of a multi-output
Boolean function F :

F : {0, 1}n → {0, 1}m, (1)

where n is the number of primary inputs and m is the num-
ber of primary outputs.

The rest of the paper is organized as follows. Section 2
introduces the principles of CGP and the utilization of CGP
in digital circuit design. A brief survey of available tools de-
voted to the evolutionary design and visualisation using GP
and CGP is given in Section 3. The proposed CGPAnalyzer
is presented in Section 4. Its functionality is demonstrated
in Section 5, where a genetic record obtained from the evolu-

1411

tionary design of a 9-parity circuit is analysed. Conclusions
are given in Section 6.

2. CARTESIAN GP
The standard CGP is a branch of GP in which candidate

designs are represented using directed acyclic graphs. CGP
is characterized by [11]:

• a simple encoding system in which a phenotype is en-
coded in a constant-size array of integers;

• a simple search method based on the (1 +λ) evolution
strategy;

• a single genetic operator – a point mutation.

2.1 Representation
A candidate circuit is modeled by means of a directed

acyclic graph whose nodes are organized in nc columns and
nr rows. Depending on a particular application, the nodes
can be elementary logic functions, transistors or high-level
components such as adders or multipliers. As we will deal
with gate-level designs, the nodes will be na-input gates op-
erating with 1 bit signals. The set of available gates Γ has to
be defined for a given problem instance. The circuit utilizes
ni primary inputs and no primary outputs. Each node input
can be connected either to the output of a node placed in
previous l columns or to one of the primary circuit inputs,
where l is one of CGP parameters.

The primary inputs and the outputs of the nodes are la-
beled 0, 1, . . . , nc ·nr +ni−1 and considered as the addresses
which the node inputs can be connected to. A candidate
solution consisting of two-input nodes (i.e. na = 2) is repre-
sented in the chromosome by nr · nc triplets (a1, a2, ψ) de-
termining for each processing node its function ψ (ψ ∈ Γ),
and the addresses of nodes a1 and a2 which its inputs are
connected to. The last part of the chromosome contains no

integers specifying the nodes where the primary outputs are
connected to. While the chromosome size s is constant for
a given product nr · nc, na and no, i.e.

s = ncnr(na + 1) + no, (2)

the phenotype (circuit) size is variable and measured as the
number of active (i.e. used) nodes. See an example in Fig. 1,
in which nodes 6, 8, 9 and 10 are not used.

2.2 Search method
CGP employs a (1 + λ) search method whose pseudo-

code is given in Algorithm 1. The initial population Q of
CGP is created either randomly or seeded by means of ex-
isting circuits. The next step consists of the evaluation of
candidate circuits using the fitness function. Each member
of Q then receives one fitness value and the highest-scored
individual becomes a new parent of the next population.
However, if two or more individuals can serve as the par-
ent, the individual which has not served as the parent in the
previous generation will be selected. This strategy is impor-
tant because it ensures the diversity of population. From
this parent, λ candidate solutions are generated using mu-
tation. The termination criterion depends on a particular
application.

Despite many attempts to propose a suitable crossover
operator to CGP, the mutation is still used as the crucial
genetic operator. The mutation operator modifies up to h

Figure 1: A candidate circuit represented by CGP
with parameters: ni = 5, no = 4, nc = 4, nr = 2, l = 4,

Γ = {0and, 1or, 2xor}. Chromosome: 1, 3, 2; 4, 2, 1;
0, 2, 2; 5, 6, 2; 1, 2, 1; 8, 6, 0; 0, 1, 0; 5, 4, 1; 7, 11,
5, 12. The nodes shown in grey are not used. The
circuit implements logic functions: y0 = x0 xor x2;
y1 = x0 and x1; y2 = x1 xor x3; y3 = (x1 xor x3) or x4.

Algorithm 1: CGP

Input: CGP parameters, fitness function
Output: The highest scored individual p and its fitness

randomly generate parent p;1

Q← {p} ∪ {λ offsprings created by mutation of p};2

EvaluatePopulation(Q);3

while 〈terminating condition not satisfied〉 do4

α← highest-scored-individual(Q);5

if fitness(α) ≥ fitness(p) then6

p← α;7

Q← {p} ∪ {λ offsprings created by mutation of p};8

EvaluatePopulation(Q);9

return p, fitness(p);10

randomly chosen genes (integers) of the chromosome. Their
new values are generated randomly, but it is checked whether
the new values are valid. One mutation can affect either
the gate function, gate input connection, or primary output
connection. A mutation is called neutral if it does not affect
the circuit’s fitness. If a mutation hits a non-used part of the
chromosome, it is detected and the circuit is not evaluated
in terms of functionality because it has the same fitness as
its parent.

The encoding used in CGP is highly redundant as many
nodes and node inputs can be disconnected from the pheno-
type. Moreover, there are usually many ways to implement
a given logic function in a given CGP instance, for example,

y = not(a) = not(not(not(a))) = nand(a, a). (3)

This redundancy together with a relatively powerful muta-
tion operator is considered as a key feature of CGP allowing
for an efficient circuit evolution. The role of redundancy and
mutation have been analysed by many authors, for example,
see [12, 5].

2.3 Fitness function
In the simplest case, the circuit responses are calculated

for a set of test vectors. The goal is to minimize the dif-
ference between the obtained vectors and desired vectors.
If the objective is to evolve a desired logic function from

1412

scratch and minimize the number of gates, the fitness value
of a candidate combinational circuit is defined as

f =

{
b when b < no2ni ,
b+ (nc · nr − z) otherwise,

(4)

where b is the number of correct output bits obtained as
response for all possible assignments to the inputs (with re-
spect fo F), z denotes the number of gates utilized in a
particular candidate circuit and nc · nr is the total num-
ber of available gates. It can be seen that the last term
nc ·nr−z is considered only if the circuit behavior is perfect,
i.e. b = bmax = no2ni . The second term can be modified to
optimize other circuit parameters.

2.4 Evolutionary circuit design with CGP
Although various new designs have been discovered using

CGP [11], the method is not directly applicable for the de-
sign of large combinational circuits because the fitness eval-
uation time grows exponentially with the number of primary
inputs. Moreover, the number of evaluations can easily go
to the millions, even for small (but nontrivial) circuits such
as multipliers. This problem has partially been eliminated
by introducing circuit decomposition techniques at the rep-
resentation level [16] and formal verification methods in the
fitness function [21]. CGP is usually capable of improving
the best results of conventional optimization tools. For ex-
ample, a 34% improvement was reported for 100 complex
benchmark circuits in [19] if the task is to minimize the
number of gates. Other successful applications of CGP have
been proposed in domains in which candidate circuits are
not evaluated using all possible input combinations (see e.g.
hash functions [7]).

3. VISUALISATION IN EA
Visualisation techniques have been adopted for under-

standing of evolutionary algorithms for decades [15]. Cur-
rent research in visualisation techniques for evolutionary
computing is very active. It includes visualisation meth-
ods for complex genotypes, phenotypes, genetic operators,
genotype-phenotype mappings, lineages, and dynamics of
evolution in single objective EAs (e.g., [2]), parameter and
decision spaces in multi-objective EAs (e.g., [18]), and par-
allel EAs (e.g., [10]).

In the case of genetic programming, a special focus is on
visualising of the structure of trees [4] that occur during
the evolution considering the fact that several thousands of
nodes may be involved in each phenotype [3]. Visualization
of genetic lineages and inheritance also helped in assembling
genealogical and inheritance graphs of populations [1]. The
whole spectrum of approaches can be found in [6].

EAs can evolve complex phenotypes such as programs,
circuits, antennas, robotic bodies and artefacts. Analysing
the development of phenotypes in the course of evolution
and evolved designs at the end of evolution could reveal
new design principles in engineering designs as exemplary
demonstrated by Koza et al. [9]. An intuitive and interactive
system capable of presenting the evolved design and design
choices to the user is of great importance. Following this
direction, for example, a 3D interactive method for linking
EA decisions through time with the design of engineering
systems was presented for water distribution network design
in [8].

While many tools have been proposed for a fast prototyp-
ing of GA/GP-based applications (including visualisation),
only a few tools exist to support the development of CGP-
based applications. In addition to Miller’s initial implemen-
tation of CGP [11], Turner and Miller have developed CGP-
Library [17] which is a cross platform CGP library designed
to be simple to use whilst being highly extendible. The li-
brary is written in C and is compatible with Linux, Windows
and Mac OS. The CGP-Library supports standard CGP, re-
current CGP, and CGP for artificial neural networks.

Vasicek and Slany have proposed an online generator of
accelerated fitness functions for the CGP-based combina-
tional circuit evolution [23]. The method is based on trans-
lation of the CGP phenotype to a binary machine code that
is consequently executed.

Pedroni developed a Java-based tool for evolutionary de-
sign using CGP [14]. All basic CGP parameters can be mod-
ified using a simple graphical user interface which also en-
ables to visualize the population and select the active nodes
in phenotypes.

Tools4CGP [20] is a set of tools implemented in C with
the aim to run experiments with CGP and visualise CGP
phenotypes (the cgpviewer tool). If the phenotype is a dig-
ital circuit, it can be simulated and exported as a source
code in hardware description language (VHDL).

4. CGPANALYZER
The available tools devoted to CGP are capable of vi-

sualizing one phenotype and performing its basic analysis
such as removing of unused components. In this paper, we
present a new tool (CGPAnalyzer) developed to analyse the
progress of evolution and the phenotypes created by CGP
in the task of evolutionary design of small combinational
circuits. CGPAnalyzer enables the user to:

• Read the whole record of CGP evolution, display the
progress of the fitness and find important points during
the evolution.

• Perform various visualisation functions over combina-
tional circuits (phenotypes) such as active and inactive
nodes visualisation, visualisation of the age of circuit
components, and truth table visualisation.

• Perform simulation of candidate circuits and compute
the truth table of selected subcircuit.

• Compare two phenotypes in terms of structure, history
and functionality.

The CGPAnalyzer tool is a desktop application with a graph-
ical user interface created using Java v.8 and Swing library.

When presenting and analysing CGP records in the task of
circuit evolution, specific features of CGP have to be taken
into account, particularly, the fact that CGP typically oper-
ates with a very small population (less than 10 individuals)
and the number of generations is very high (in the order of
millions) and thus many candidate circuits are produced. As
most genetic operations have no effect on the functionality,
the role of neutrality and redundancy is important. Func-
tionality of the circuit (as well as its subcircuits) can easily
be simulated, but the simulation can be time consuming or
even intractable as the simulation time is exponentially de-
pending on the number of inputs. The evolution has two

1413

main phases which are (1) searching for a fully functional
solution from a randomly created initial population and (2)
optimizing circuits parameters (the number of gates in our
case) when a fully functional solution is discovered.

The following subsections introduce the key functionality
and features of CGPAnalyzer.

4.1 Input file
CGPAnalyzer accepts a log file generated in the course of

the CGP evolution. The log file is in the format supported
by Tools4CGP [20]. It contains the following information
for every recorded generation:
Generation: k
Chromosome 1
Chromosome 2
...
Chromosome λ,
where k is the generation counter. Each chromosome has
the following structure:
{fc, β}{ni, no, nc, nr, na, l, β}
([ni]a

ni , bni , cni) . . . ([g]ag, bg, cg)
(o1, . . . , ono),
where the first part contains the fitness value (fc), the num-
ber of active gates β and the standard CGP parameters. For
each gate (with the index ni . . . g, where g = ni +nc.nr−1),
the gate index (denoted []), the input connection addresses
(a, b) and gate function c are provided. Finally, no integers
are devoted to the primary outputs.

In another file, functions.txt, the function set for a given
log file is defined.

4.2 Analysis of the record of evolution
After reading the input file, CGPAnalyzer displays the de-

velopment of the best fitness and corresponding phenotypes
(Fig. 2). The generations in which the fitness score was im-
proved are automatically identified (shown as red squares)
and the user can navigate through the corresponding pheno-
types, skipping thus (potentially uninteresting) generations.
The fitness graph as well as the phenotypes can be zoomed
in/out. The phenotype size is limited by the screen size.

4.3 Visualisation of a phenotype
For the phenotype chosen by the user, its array of nc ×

nr gates is displayed including the primary inputs, outputs,
gate functions and gate interconnects. Unused gates and
interconnects can be hidden in order to better understand
the circuit structure. The histogram of used functions can
be also displayed.

CGPAnalyzer computes the last generation in which each
gene was modified by the mutation operator. Since there
is the one to one mapping between genotypes and pheno-
types in CGP, the last modification directly represents the
age of each component (gate function, interconnect) of the
circuit. Please note that this age is relative with respect to
the generation which the chosen circuit belongs to. For ex-
ample, let us assume that the chosen circuit is the best one
from generation 100 and we are interested in one of its gates
whose function (gene) is encoded at position 50 of the chro-
mosome. If the last modification of this gene were done in
generation 90 then its age would be 10. Now let us assume
that the user selected the best circuit from generation 200
and the gene (at position 50) has not been modified since
generation 100. Then the age of the gate function is 110.

The age is mapped onto (up to) 20 different colours and
the determined colour is used to display a given circuit com-
ponent. Moreover, the coloured area of the rectangle repre-
senting a particular gate is proportional to the age of the
gate function. Only 20 different colours are used to be
comfortably distinguishable by the user. This method en-
ables to easily identify those parts of the circuits which were
fixed many generations ago as well as the newly introduced
changes. The visualization of circuit’s history will be demon-
strated using a concrete example in Section 5, Fig. 5.

4.4 Comparison of phenotypes
The user is allowed to select two phenotypes which can be

compared. This unique feature enables to identify how the
changes conducted at the level of genotypes are reflected
in phenotypes and finally in the circuit behaviour. If the
best phenotypes obtained in the course of CGP generations
are analyzed and compared, the construction of the final
phenotype from the initial population can be reconstructed.

In some cases, the evolution is seeded by a fully functional
circuit and the goal is to minimize the number of gates. The
proposed comparison utility is useful in revealing the tricks
used by the evolution to improve the circuit.

In CGPAnalyzer, both circuits are displayed in such a
way that differences in gate functions and interconnects are
highlighted. The age of components of the first circuit can
be determined with respect to the second circuit.

As all phenotypes are combinational circuits, they can be
simulated to compute the truth table. This functionality is
implemented in an innovative way. The truth table can be
obtained not only for the whole circuit, but also for sub-
circuits. A subcircuit is defined by a gate (selected by the
user) and all the gates directly or indirectly connected to
the inputs of the chosen gate. The truth table is shown in a
separate window. In order to illustrate this feature, Figure 3
shows the best circuits obtained during the evolution of a 3-
input/8-output circuit in generations 19 and 39. The task
was to compare subcircuits connected to the second output
in both cases (in other words, the output of gate 23). These
subcircuits are shown in orange color. Corresponding truth
tables are given in a separate window (Fig. 4), where the
input combinations for which the subcircuits give different
output values are highlighted (red).

Figure 4: Comparison of truth tables for selected
subcircuits (according to gate 23) in Figure 3.

5. CASE STUDY: 9-BIT PARITY
This section demonstrates the functionality of CGPAna-

lyzer when one record of the evolution of a 9-bit even par-
ity circuit is analysed. The CGP parameters were ni = 9,
no = 1, nc = 6, nr = 6, l = 1, na = 2, Γ = {and, or, xor,

1414

Figure 2: CGPAnalyzer application window showing the progress of the best fitness value (top) and best
candidate circuits in selected generations (down).

Figure 3: A comparison window: Two selected subcircuits are highlighted and compared according to gate
23 (selected by the user) which determines the particular subcircuits.

identity}, λ = 4, and 10 000 generations were conducted.
The maximum fitness (in terms of the functionality) of a
circuit computing the 9-bit parity is fmax = 29 = 512.

The development of the best fitness is shown in Fig. 2.
The best circuit randomly created in the first population re-
ceived the fitness value f = 256. There were 9 changes in
the best fitness in the course of the evolution before reaching
fmax = 512. The first improvement in the fitness (f = 257)
from generation 6 901 indicates that the initial population
contained circuits far from the desired one and it took thou-
sands of generations, full of neutral or harmful mutations,
before introducing a useful mutation which improved the
fitness just by 1 point.

The analysis of the circuit with f = 257 in Fig. 5 revealed
that all its components are no older than 397 generations,

most of them were fixed a few generations before the gen-
eration 6 901. Please note that unused gates are shown in
grey in Fig. 5.

The comparison function of CGPAnalyzer is very useful
for understanding how the final phenotype was constructed.
In order to demonstrate this feature, we will analyse se-
lected changes of the best circuit in the progress of evolu-
tion. Figure 6 compares the best circuit from generations
7 107 (f = 272) and 7 108 (f = 288). The second input of
gate 39 is reconnected from gate 35 to gate 38. By connect-
ing a new subcircuit to (and disconnecting one gate from)
the circuit, the fitness was improved by 288 − 272 = 16
points. This illustrates a typical property of CGP that mu-
tations can accumulate useful logic function in the unused
part of the genotype which is then activated, connected to

1415

Figure 5: The age (history) of active circuit components shown in color. Red (0) is used for genes (compo-
nents) created in the current generation. Unused gates are shown in grey.

Figure 6: Comparison of the best phenotypes in generations 7 107 and 7 108.

the phenotype and the fitness is improved. Note that the
age of components is not shown in Fig. 6.

Figure 7 compares the best circuit from generations 9 392
(f = 320) and 9 400 (f = 512). In can be seen that the
fully functional circuit discovered in generation 9 400 differs
in just two gate functions from the best circuit in generation
9 392, but the improvement in the fitness is huge (521−320 =
192 points).

After reaching the fully functional solution in generation
9 400, CGP used the remaining 600 generations to minimize

the number of gates from 11 to 10. Figure 8 shows the age of
circuit components in generations 9 400 and 10 000. As the
age of active gates (and interconnect) is almost identical in
both circuits (consider the difference of 600 generations) we
can conclude that the last 600 generations were primarily
spent by mutations in the unused part of the best chromo-
somes. Mutations hitting the active part of parent circuits
were harmful or neutral.

Regarding the computing time, the reading of a 200 MB
record of evolution requires approx. 8 seconds on the In-

1416

Figure 7: Comparison of the best phenotypes in generations 9 392 and 9 400.

Figure 8: Comparison of the age of components in the best phenotypes in generations 9 400 and 10 000.

tel Core i5-3570 processor running at 3.40 GHz. All other
operations of CGPAnalyzer represent no delay for the user.

6. CONCLUSIONS
In this paper, a new tool was presented which is capable of

reading and analysing the genetic records generated in the
process of evolutionary circuit design using CGP. The key
functionality presented in the paper (but unseen in current
software tools dealing with CGP) is an automatic identifica-
tion of interesting genotypes (and thus phenotypes) in the
genetic record and a comparison module allowing the user to
select two phenotypes and compare their structure, history
and functionality.

These features should help the designers to understand the
underlying circuit optimization steps and reveal new opti-
mization heuristics that could be applied in conventional cir-
cuit design and optimization tools and for (relaxed) Boolean

equivalence checking methods, which have been developed in
the area of approximate computing [22].

One of future directions for developing CGPAnalyzer lies
in supporting a multi-objective scenario (with the objectives
such as the area on a chip, delay and power consumption)
which is typical for conventional circuit optimization tools.

Acknowledgment
This work was supported by the Czech science foundation
project GA16-17538S and Brno University of Technology
project FIT-S-14-2297.

7. REFERENCES
[1] B. Burlacu, M. Affenzeller, M. Kommenda, S. M.

Winkler, and G. Kronberger. Visualization of genetic
lineages and inheritance information in genetic
programming. In Genetic and Evolutionary

1417

Computation Conference, Companion Material
Proceedings, pages 1351–1358. ACM, 2013.

[2] A. Cruz, P. Machado, F. Assunção, and A. Leitão.
Elicit: Evolutionary computation visualization. In
Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary
Computation, pages 949–956. ACM, 2015.

[3] J. M. Daida, A. M. Hilss, D. J. Ward, and S. L. Long.
Visualizing tree structures in genetic programming.
Genetic Programming and Evolvable Machines,
6(1):79–110, 2005.

[4] A. Ekart and S. Gustafson. A data structure for
improved GP analysis via efficient computation and
visualisation of population measures. In 7th European
Conference on Genetic Programming, EuroGP 2004,
Proceedings, volume 3003 of LNCS, pages 35–46.
Springer-Verlag, 2004.

[5] B. W. Goldman and W. F. Punch. Analysis of
cartesian genetic programming’s evolutionary
mechanisms. IEEE Transactions on Evolutionary
Computation, 19(3):359–373, 2015.

[6] S. M. Gustafson, W. B. Langdon, and J. Koza.
Bibliography on genetic programming, 2015.
http://liinwww.ira.uka.de/bibliography/Ai/
genetic.programming.html.

[7] P. Kaufmann, C. Plessl, and M. Platzner. EvoCaches:
Application-specific Adaptation of Cache Mappings.
In Proceedings of the NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), pages 11–18.
IEEE Computer Society, 2009.

[8] E. Keedwell, M. Johns, and D. Savic. Spatial and
temporal visualisation of evolutionary algorithm
decisions in water distribution network optimisation.
In Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary
Computation, pages 941–948. ACM, 2015.

[9] J. R. Koza. Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer
Academic Publishers, 2003.

[10] E. Lutton, H. Gilbert, W. Cancino, B. Bach,
P. Parrend, and P. Collet. Gridvis: Visualisation of
island-based parallel genetic algorithms. In
Applications of Evolutionary Computation: 17th
European Conference, EvoApplications 2014, pages
702–713. Springer Berlin Heidelberg, 2014.

[11] J. F. Miller. Cartesian Genetic Programming.
Springer-Verlag, 2011.

[12] J. F. Miller and S. L. Smith. Redundancy and
computational efficiency in cartesian genetic
programming. IEEE Transactions on Evolutionary
Computation, 10(2):167–174, 2006.

[13] J. F. Miller and P. Thomson. Cartesian Genetic
Programming. In Proc. of the 3rd European
Conference on Genetic Programming EuroGP2000,
volume 1802 of LNCS, pages 121–132. Springer, 2000.

[14] E. Pedroni. JCGP, 2014.
https://bitbucket.org/epedroni/jcgp/.

[15] T. Routen. Techniques for the visualisation of genetic
algorithms. In IEEE World Congress on
Computational Intelligence. Proceedings of the First
IEEE Conference on Evolutionary Computation, pages
846–851 vol.2. IEEE, 1994.

[16] E. Stomeo, T. Kalganova, and C. Lambert.
Generalized disjunction decomposition for evolvable
hardware. IEEE Transaction Systems, Man and
Cybernetics, Part B, 36(5):1024–1043, 2006.

[17] A. J. Turner and J. F. Miller. Introducing a cross
platform open source cartesian genetic programming
library. Genetic Programming and Evolvable
Machines, 16(1):83–91, 2014.

[18] T. Tusar and B. Filipic. Visualization of pareto front
approximations in evolutionary multiobjective
optimization: A critical review and the prosection
method. IEEE Transactions on Evolutionary
Computation, 19(2):225–245, 2015.

[19] Z. Vasicek. Cartesian GP in optimization of
combinational circuits with hundreds of inputs and
thousands of gates. In Proceedings of the 18th
European Conference on Genetic Programming –
EuroGP, LCNS 9025, pages 139–150. Springer
International Publishing, 2015.

[20] Z. Vasicek and L. Sekanina. Tools4CGP – tools for
cartesian genetic programming, 2008.
http://www.fit.vutbr.cz/˜ vasicek/cgp/tools/.

[21] Z. Vasicek and L. Sekanina. Formal verification of
candidate solutions for post-synthesis evolutionary
optimization in evolvable hardware. Genetic
Programming and Evolvable Machines, 12(3):305–327,
2011.

[22] Z. Vasicek and L. Sekanina. Evolutionary design of
complex approximate combinational circuits. Genetic
Programming and Evolvable Machines, 17(2):1–24,
2016.

[23] Z. Vasicek and K. Slany. Efficient phenotype
evaluation in cartesian genetic programming. In Proc.
of the 15th European Conference on Genetic
Programming, LNCS 7244, pages 266–278. Springer
Verlag, 2012.

1418

