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ABSTRACT
Previous work has demonstrated the utility of graph databases as
a tool for collecting, analyzing, and visualizing ancestry in evolu-
tionary computation runs. That work focused on sections of indi-
vidual runs, whereas this paper illustrates the application of these
ideas on the entirety of large runs (up to three hundred thousand
individuals) and combinations of multiple runs. Here we use these
tools to generate graphs showing all the ancestors of successful in-
dividuals from a variety of stack-based genetic programming runs
on software synthesis problems. These graphs highlight important
moments in the evolutionary process. They also allow us to com-
pare the dynamics for successful and unsuccessful runs. As well
as displaying these full ancestry graphs, we use a variety of stan-
dard techniques such as size, color, pattern, labeling, and opac-
ity to visualize other important information such as fitness, which
genetic operators were used, and the distance between parent and
child genomes. While this generates an extremely rich visualiza-
tion, the amount of data can also be somewhat overwhelming, so
we also explore techniques for filtering these graphs that allow us
to better understand the key dynamics.

1. INTRODUCTION
Reporting of results in genetic programming (GP) and evolu-

tionary computation (EC) research is frequently limited to aggre-
gate statistics such as mean best fitness or percentage of successful
runs. Unfortunately this fails to convey the complex dynamics of
such evolutionary systems and obscures or omits potentially valu-
able information about why the runs behaved as they did. While
it’s clearly valuable to know that Approach A is “better” in some
sense (e.g., more successes) than Approach B, it’s also valuable to
understand why it succeeds more often, a question that summary
statistics rarely shed any light on.

One way to move past the limitations of summary statistics is
to collect ancestry information on runs, recording and analyzing
parent–child relationships [3, 4, 12]. Most previous ancestry work
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in EC has been limited to fairly small datasets, however, in part
because of the challenges of storing and working effectively and
efficiently with the hundreds of thousands of ancestry relationships
present in most EC runs.

Previous work [9] has shown the utility of graph databases as
tools for collecting and analyzing large collections of ancestry data
from GP runs, helping to identify key moments in runs, and general
behavioral trends. That work, however, was focused on sections of
individual runs. In this paper we illustrate the use of these tools
as a means of visualizing and exploring entire ancestry trees, as
well as combinations of ancestry trees. We use the Titan graph
database1 along with the Tinkerpop query tools2 to store the parent-
child relationships from genetic programming runs, and to extract
the ancestry trees of specified individuals. We then visualize these
subgraphs using the Graphviz dot graph layout tool.3

In the next section we will describe the test environment used
to generate the data used in this paper. Section 3 describes the ba-
sic graph structure used in these visualizations, including detailed
descriptions of how the rendering of edges and nodes conveys ad-
ditional information about the individuals and run dynamics. The
initial graphs are large enough to be rather overwhelming, so in
Section 4 we describe ways to filter these large graphs into more
comprehensible subgraphs. Section 5 provides examples of our
ability to compare multiple runs side-by-side, illustrating similari-
ties and differences in the run dynamics. We wrap up with some
ideas for future work in Section 6 and conclusions in Section 7.

2. OUR TEST ENVIRONMENT
All the visualizations presented here are on runs using the Clo-

jush implementation4 of the PushGP genetic programming (GP)
system [10, 11], but all of the ideas here could easily apply to al-
most any evolutionary computation (EC) system. The use of graph
databases to capture ancestor lineages is a completely general con-
cept and could be applied to any system that implements a notion
of descent with modification. Some of the visualization specifics
are tied to particular metrics (e.g., the Damerau–Levenshtein dis-
tance between linear genomes), but these could be replaced with
other metrics as appropriate to the application domain (e.g., man-
hattan distances between genetic algorithms bitstrings, or tree edit
distances in tree-based GP).

1http://thinkaurelius.github.io/titan/
2https://tinkerpop.apache.org/
3http://www.graphviz.org/
4https://github.com/lspector/Clojush
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Figure 1: Basic layout of ancestry trees, showing parent-child
relationships. Generations are labeled on the left-hand side and
run from generation 0 (the start of the run) at the top down to
the end of the run at the bottom.

One important feature of the PushGP system is the use of lex-
icase selection [7]. One of the design goals for lexicase selection
was the preservation of behavior diversity. The ancestry informa-
tion in the graph databases and in the tree visualizations in this
paper can be used to visually and quantitatively check how well
those goals are being met. One property of lexicase selection is
that it enables the possibility of hyperselection events [5], where an
individual receives an extremely high proportion of the selections
in a given generation. Occasionally, for example, an individual that
"discovers" an important new behavior can receive over 90% of the
selections and consequently be a parent of nearly all the children
in the next generation. These hyperselection events will be visually
obvious in our graph visualizations below.

We have applied these visualizations to a number of different
problems taken from a suite of software synthesis benchmark prob-
lems [6], but in the interest of space we will focus here on a single
test problem: Replace Space With Newline. In this problem the
goal is to evolve a program that takes a string as input and has two
tasks: (a) it should print the input string, with all spaces replaced by
newlines, and (b) it should return an integer that is the number of
characters in the input string that were not replaced. The existence
of these two distinct types of error values will be used in some of
the visualizations as described in Section 3.2.

The details of the system and settings used in these runs are
as described in [6]. There are, however, two parameters that are
directly relevant to these visualizations: The population size was
1,000, and the runs were stopped after 300 generations if a suc-
cessful individual was not found. This means that we were storing
and processing considerable information on up to 300,000 individ-
uals per run. We have also generated visualizations on runs in other
settings where there were over a million individuals; these graphs
are too large to meaningfully include in a paper such as this.

3. VISUALIZING ANCESTRY GRAPHS
Our primary visualization of these EC runs is via ancestry trees

where individuals are represented as nodes, and parent-child rela-
tionships are represented as edges. An example of this basic struc-
ture is illustrated in Figure 1. For a successful run, where at least
one individual has found a solution, we obtain the ancestry tree by
first finding all successful individuals in the final generation. We go
back through the generations to retrieve these individuals’ parents,
grandparents, etc. until we have every ancestor from start to finish.
In an unsuccessful run, where no individual has found a solution
to the problem, we take all of the individuals in the last generation

and create a tree out of their ancestors. The visualization in Fig-
ure 1 captures the basic ancestry structure, but conveys no informa-
tion about the particular individuals, or their relationships. In the
remainder of this section we’ll describe several techniques which
greatly increase information density of the visualizations.

3.1 Edges
As stated previously, edges show the parent-child relationship

in our ancestry diagrams. To increase the amount of information
conveyed in these visualizations, however, we use aspects of the
edges such as color, style, width, and transparency to convey more
information about these runs. First, we use the color and style of
an edge to indicate what operator or combination of operators was
used to create a child:

• Solid & Black: Alternation, followed by Uniform Mutation
• Dashed & Black: Alternation
• Solid & Orange: Uniform Mutation
• Dashed & Orange: Uniform Closed Mutation

The width of an edge is determined by the Damerau–
Levenshtein distance between a parent’s and child’s genome.5 We
use this as a measure of how similar a child is to its parent; the
smaller this distance, the more similar their genomes. Since we
want to emphasize strong parent-child relationships, we set the
edge to be width of the edge to be inversely proportionate to the
distance; if a child is similar to its parent, the wider the edge will
be, and larger distances will result in thinner edges.

The last aspect of edges is their transparency, which we based
on the number children an individual has in this graph. An incom-
ing edge is more opaque if the individual has many children in the
current ancestry tree. This helps us find the parents of individuals
that have many children in the displayed tree since these edges are
more opaque than others.

3.2 Nodes
Just as we adjust aspects of the edges in our diagrams to tell us

more information about the runs, we adjust aspects of the nodes as
well. Starting form a simple rectangular shape, we alter the width,
height, and the color of the node.

The width of a node is based on the individual’s number of se-
lections. This is the number of times an individual was selected
to be a parent. A node that is very wide will have an overall high
number of selections, and thus be a parent of many children; not
all of those children will necessary be displayed in this graph, so
it’s possible to have very wide nodes with few displayed children.
A very wide node is also a clear indicator of hyperselected individ-
uals [5] which often play very important roles in the dynamics of
runs using lexicase selection. The height of a node is based on how
many children an individual has this ancestry graph. Similar to the
opacity of an edge, the more children a node has in this ancestry
tree, the taller the node.

In the following graphs, we illustrate the use of two different
coloring schemes for nodes, each of which conveys information
about the errors (and thus the fitness) of the individuals represented
by nodes. The first, dual coloring, uses color to represent success
on the two distinct types of errors (see Section 2). The second, RBM
coloring, uses restricted Boltzmann machines (RBMs) to compress
the 200 error values into 24-bit RGB color values.

The dual coloring approach uses hue-saturation-lightness
(HSL) coloring based on the “success” of a given individual. The
Replace Space With Newline problem is special in the sense that
5The Clojush system uses linear Plush genomes that are then con-
verted to PushGP programs. All genetic operations act on these
genomes.
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Figure 2: Dual Colored (left) and RBM Colored (right) versions of a successful lexicase run (run 0) ancestry tree.

there are two halves of the problem, printing and returning. The
test cases that track these aspects are also split into two sets of one-
hundred cases. We take advantage of this by separating the two
sets of cases and assigning a color to each half, with the color of
the left side of a node based on the printing errors, and the color
on the right side based on the return errors. For a test case to be
passing, there needs to be an error of zero. The hue of one half of a
node is based on the percent of zeros, i.e., successful cases, for that
half. The hue ranges from red (the worst, with no zeros) to yellow
(the best, with all zeros). This coloring tells us how many test cases
an individual solves, but gives no information on how far off it is
on the other test cases. For this we incorporated lightness into the
coloring as well. The lightness of one side of a node is based on the
individual’s total error on that half of the test cases, with higher to-
tal errors receiving darker shading. An example of this is in Figure
2, where the dual coloring graph is on the left-hand side.

One potential concern with the dual coloring approach is that
we are simply counting successful test cases to determine the hue,
and using the total error for the lightness. Both of these are ag-
gregate measures that can obscure valuable details such as which
test cases are being solved. Because lexicase selection bases se-
lection on entire error vectors (instead of, for example, just using
total error), which test cases are being solved becomes much more
important than just how many, or what the total error is. To address
this, we generated a second coloring that used a simple implemen-
tation6 of restricted Boltzmann machines (RBMs) as a dimension-
ality reduction tool [8]. Here we trained RBM autoencoders to map
200-bit vectors to 24-bit vectors, where the inputs were binary ver-
sions of the error vectors where every non-zero value was converted
to 1, and the outputs were interpreted as 24-bit RGB colors. This
allowed us to see valuable relationships between individuals that
were successful on similar sets of test cases.

Figure 2 shows both color schemes side-by-side on the same
ancestry tree from a short, successful run. Both colorings highlight
major changes in the error vectors over time, but in different ways.
In the center of the dual color graph, for example, there is a large
individual that is purple on the left side and green on the right, with
the green indicating a major improvement on the test cases that re-
quire a returned value. It’s also worth noting that the size of this
individual indicates that it received a high proportion of the parent
selections, and was a parent of a substantial number of the individ-

6https://github.com/echen/restricted-boltzmann-machines

uals in the next generation. The fact that the incoming edge is solid
orange tells us that it was created through uniform mutation, sug-
gesting that a fairly small change to the genome led to a substantial
change in the behavior. Five generations later we see a large node
that is yellow on the left and purple on the right. The bright yellow
indicating that it is perfect on most of the printing test cases, with
low total error across these same cases. The purple suggests this in-
dividual is not very successful on the integer return test cases. This
individual’s behavior is thus a “mirrored” version of the behavior
of its purple-green ancestor from five generations earlier.

The RBM coloring on the right hand side of Figure 2 does not
capture the differences between the two types of test cases, but still
reflects the same major changes in its color scheme. Its coloring
also shows more variation in the first half of the run, where the low
brightness in the dual color graph limits the visible variations.

4. FILTERING
While the large graphs of full runs can provide an excellent

“big picture” view of the run dynamics, there is so much informa-
tion that it can be difficult to isolate specific features. We can, how-
ever, extract and visualize subgraphs that focus on specific areas or
events in the runs. The left hand graph in Figure 3, for example, is
the full ancestry of the successful individual from one of our runs,
and contains 22,435 nodes and 35,403 edges. This full ancestry
graph gives us a strong sense of the large scale dynamics of the
run, while the shape of the graph as well as the sizing and color-
ing of nodes highlight some major events in the history of the run.
There are, however, large sections of the graph composed of hun-
dreds of very small nodes that make it very difficult to trace through
and discover what might be the most important paths through that
part of the genetic history.

An obvious approach to this problem is to filter the results, we
have already been using one simple filtering throughout the pa-
per. In all the successful runs that we visualize here, we are only
showing individuals that are ancestors of the successful individ-
ual(s) in the final generation.7 For example, if we visualized every
individual in the run shown in Figure 3 the graph would contain

7Here is one place where graph databases really shine. To extract
this ancestry information from a relational or document-oriented
database would be an expensive series of recursive queries. With
a graph database system such as TitanDB and Tinkerpop, however,
this becomes a simple one line query.
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Figure 3: Unfiltered (left) and filtered (right) versions of a successful run (run 1), both with the same color map.
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over six times as many elements, with 130,000 nodes and 219,541
edges. Most individuals in evolutionary systems aren’t ultimately
ancestors of individuals in the final population; they’re evolutionary
“dead ends”, either because they have no children, or their descen-
dants eventually fail to have children. All the graphs in this paper
use this type of filter to substantially cut down on the number of vi-
sualized nodes, only looking at ancestors of successful individuals
or, in the case of unsuccessful runs, only looking at ancestors of in-
dividuals in the final generation. This typically reduces the number
of nodes in a generation (row of the graph) from the original 1,000
to 300 or less, and sometimes down to a few dozen.

As discussed above, while this filtering strongly focuses the
visualization, this still can leave us with too much information if
our goal is to trace key paths through the history. Here we demon-
strate the use of a combination of ancestry information and genome
distances between parents to substantially tighten the focus of the
ancestry graphs. The key idea, which grew out of observations of
our early graphs, is to use a distance metric to determine which par-
ents are contributing “substantial” genetic material to the resulting
child. This allows identification of crossovers where one of the par-
ents contributed the preponderance of the child’s genetic material.
If we filter out parents that are making limited contributions to their
children’s genetics, then we end up recursively removing many of
their ancestors as well, profoundly thinning the graph.

Unfortunately there’s no easy way to guarantee that any non-
zero contribution, however small, might not in fact be crucial to the
behavior of the child. A parent might only contribute one instruc-
tion to its child, but that could be the vital piece that leads to a so-
lution. Even worse, it’s possible that the presence of an individual
could have had a subtle but important impact on the dynamics of
a run even if that individual never directly contributed any genetic
material to the eventually successful individual. Acknowledging
those complexities, we have still found it useful to filter ancestry
trees, recognizing that we might need to “unfilter” some individu-
als if further analysis suggests that their contributions were more
substantial than initially expected.

The method used here was based on the Damerau–Levenshtein
distance between the parent and child genomes. Our filter-
ing algorithm was fairly simplistic: Assume we have two par-
ents, p and q, and a child c such that a = DL-distance(p, c),
b = DL-distance(q, c), and s = genome-length(c), and assume
without loss of generality that a ≤ b. Then filter out parent q if ei-
ther a < 0.2× s or b ≥ 2× a. Thus parent q will be filtered out if
parent p is particularly close to the child, or if parent q is more than
twice as far away from the child as parent p. The choices of the
constants 0.2 and 2 are obviously somewhat arbitrary, but appeared
to work reasonably well on these datasets. There are, however, ex-
amples where a filtered parent did in fact contribute a significant
number of instructions to the offspring, so one would need to be
careful in not making overly broad assumptions based on an indi-
vidual not being in the filtered version of a graph.

Returning to Figure 3, the right hand graph is a filtered version
of the left hand graph. Both graphs use the same RBM coloring, so
it is in many cases possible to pick out corresponding individuals in
the two graphs. In the filtered graph, however, it’s entirely possible
to trace every relationship from the beginning of the run to the suc-
cessful individual 130 generations later, where this is unfeasible
in the unfiltered graph. The filtered graph has 1,597 vertices and
1,794 edges, roughly 20 times fewer than in the unfiltered graph,
and roughly 100 times fewer than in the full graph.

Comparing the two graphs reveals several important events and
phases in the run. Both graphs show an initial “settling out” phase,
where most of the initial random population contributes little or
nothing and there are quite a few very strong selection events as

evidenced by the variety of wide nodes in the early generations.
Starting around generation 20, however, the dynamics in both runs
start to become more complex, with both graphs moving to more
individuals in each generation and a more complex edge structure.
While the unfiltered graph remains quite wide up to generation 56
or so, the filtered graph starts to thin out, leading to a fairly small
set of largely linear “threads”. In generation 50, for example, the
unfiltered graph has 305 individuals out of the 1,000 individuals
in that generation, whereas the filtered graph only has 13 individ-
uals. While the nodes in those threads are quite small, several of
the threads are sequences of individuals whose colors are similar
within the thread, but different from the colors in other threads.
This suggests (and additional analysis of the data in the database
further supports) that at least some of these threads may represent
sub-populations that are focusing on different parts of the problem.

Moving further into the run, both graphs show a significant
change by generation 63, with a series of hyperselection events sug-
gesting that there is some sort of discovery. In the unfiltered graph
this expresses itself as a strong narrowing of the graph, as the hy-
perselection events substantially reduce the number of individuals
in those generations that go on to be ancestors of the successful
individual. In the filtered graph the representation is almost the op-
posite, where the few threads give way to a “knot” of more individ-
uals with much less linear ancestries with more complex mixing.
After a while this settles down, with the unfiltered graph widening
back out and the filtered graph returning to a decreasing number of
mostly linear ancestries. At the end of the run there are visual indi-
cations of major discoveries that lead to large hyperselection events
that dominate the dynamics in the last few generations.

5. COMPARING RUNS
In this section we will demonstrate the ability to graph multi-

ple runs side by side for comparison, similar to the unfiltered and
filtered graphs in Figure 3. We will first compare three successful
runs, and then a collection of four different runs, two of which were
successful and two of which were not.

5.1 Successful Runs
Figure 4 shows the filtered graphs from three successful runs

(from left to right, run 1, 99, and 6) using the same RBM color
scheme for all three.8 The shared color scheme allows us to see
similar individuals (in terms of error vectors) across multiple runs.
All these runs, for example, start with green nodes, suggesting
those individuals have similar error vectors. It is interesting to note
that runs 1 and 99 both have several very strongly selected nodes in
the first 15 generations that introduce new but related colors, with
both runs having both blue and pink nodes. Run 6, on the other
hand, remains primarily green for quite a bit longer and does not
have many highly selected individuals until around generation 40.
Some of the new colors introduced in run 6 are blues that look sim-
ilar to nodes in runs 1 and 99, but there are also beige nodes that
appear different from the early nodes in the other graphs.

All three runs share some substantial large scale features. All
have initial “settling out” periods, which eventually develop into a
relatively small set of largely linear lineages. All have one or more
“knots” where there are higher degrees of connectivity for several
generations before returning to the more linear ancestries. The end
of all three runs feature several very strong hyperselection events.

8The leftmost graph in Figure 4 is the same data as the rightmost
(filtered) graph in Figure 3 above, with a different RBM coloring
and a slightly different layout.
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Figure 4: Filtered ancestry graphs of three successful runs (left to right, runs 1, 99, and 6), all with the same color map.
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Figure 5: Full ancestry graphs of 4 different runs (left to right, runs 92, 2, 1, and 99), all with the same color map.
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5.2 Successful vs. Failed Runs
Figure 5 shows the full unfiltered ancestries for four different

runs (from left to right, runs 92, 2, 1, and 99). The leftmost two
(runs 92 and 2) were unsuccessful, so these graphs show the an-
cestors of all the individuals present in the final generation.9 Runs
1 and 99 were successful and are also visualized in Figure 4. All
four graphs use the same dual color scheme, which shows that in
all four cases similar individuals are discovered early that are very
successful (bright yellow) on the integer return cases (right hand
side of nodes) and have similar (purple) success rates on the print-
ing cases (left hand side of nodes). The most selected individuals in
the initial random populations for the two unsuccessful runs have
very dark colors on the right hand sides of their nodes, indicating
that the most selected initial individuals had very high total error
on the integer return cases.

After the initial settling out, run 2 has no significant hyperse-
lection events, and no substantial changes in the visual structure of
the graph. The other three runs, however, have a variety of highly
selected individuals, and associated changes in the shape of their
graphs. It’s possible, therefore, that run 92 might have eventually
discovered a solution if given more generations, where run 2 seems
much less likely to make progress.

6. FUTURE WORK
Two major issues in this work so far are the static nature of

the figures and the challenges of displaying and working with such
large, dense graphs. Static visualizations are not inherently bad,
and are obviously important for things like print work. There is,
however, only so much data that can be compressed into static vi-
sualizations such as this, and it would certainly be nice to be able to
interact with the graphs dynamically, clicking on nodes or edges to
access additional information that is in the database, but not directly
or exactly displayed. A dynamic display such as used in the Deep-
Tree exhibit [2] or using tools such as Gephi10 or Google Maps [1]
might also make it easier to move around in very large graphs.

A further application of these ideas would be to use these
graphs to compare the dynamics of evolutionary systems using, for
example, different selection mechanisms. Previous research [9] has
compared the dynamics of sections of runs using tournament selec-
tion and lexicase selection; this work could be extended to compare
the ancestry graphs of entire runs.

7. CONCLUSIONS
Here we have demonstrated the ability to collect and visualize

ancestry data from large genetic programming runs. The resulting
graphs provide valuable information about both the overall dynam-
ics of the runs, as well as highlighting specific important events in
the evolutionary process, such as instances of hyperselection and,
through filtering, the existence largely independent subpopulations
focusing on different test cases. Use of these sorts of visualizations
have proved valuable in understanding properties of important tools
such as selection operators and can help guide the development of
new techniques based on a more detailed understanding of the be-
havior of evolutionary systems.
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