
Visualizing Genetic Programming Ancestries

Nicholas Freitag McPhee
Div. of Science and Math
Univ. of Minnesota, Morris

Morris, MN USA-56267
mcphee@morris.umn.edu

Maggie M. Casale
Div. of Science and Math
Univ. of Minnesota, Morris

Morris, MN USA-56267
casal033@morris.umn.edu

Mitchell Finzel
Div. of Science and Math
Univ. of Minnesota, Morris

Morris, MN USA-56267
finze008@morris.umn.edu

Thomas Helmuth
Computer Science Dep’t

Washington and Lee Univ.
Lexington, VA USA-24450

helmutht@wlu.edu

Lee Spector
Cognitive Science
Hampshire College

Amherst, MA USA-01002
lspector@hampshire.edu

ABSTRACT
Previous work has demonstrated the utility of graph databases as
a tool for collecting, analyzing, and visualizing ancestry in evolu-
tionary computation runs. That work focused on sections of indi-
vidual runs, whereas this paper illustrates the application of these
ideas on the entirety of large runs (up to three hundred thousand
individuals) and combinations of multiple runs. Here we use these
tools to generate graphs showing all the ancestors of successful in-
dividuals from a variety of stack-based genetic programming runs
on software synthesis problems. These graphs highlight important
moments in the evolutionary process. They also allow us to com-
pare the dynamics for successful and unsuccessful runs. As well
as displaying these full ancestry graphs, we use a variety of stan-
dard techniques such as size, color, pattern, labeling, and opac-
ity to visualize other important information such as fitness, which
genetic operators were used, and the distance between parent and
child genomes. While this generates an extremely rich visualiza-
tion, the amount of data can also be somewhat overwhelming, so
we also explore techniques for filtering these graphs that allow us
to better understand the key dynamics.

1. INTRODUCTION
Reporting of results in genetic programming (GP) and evolu-

tionary computation (EC) research is frequently limited to aggre-
gate statistics such as mean best fitness or percentage of successful
runs. Unfortunately this fails to convey the complex dynamics of
such evolutionary systems and obscures or omits potentially valu-
able information about why the runs behaved as they did. While
it’s clearly valuable to know that Approach A is “better” in some
sense (e.g., more successes) than Approach B, it’s also valuable to
understand why it succeeds more often, a question that summary
statistics rarely shed any light on.

One way to move past the limitations of summary statistics is
to collect ancestry information on runs, recording and analyzing
parent–child relationships [3, 4, 12]. Most previous ancestry work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’16 Companion, July 20 - 24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4323-7/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908961.2931741

in EC has been limited to fairly small datasets, however, in part
because of the challenges of storing and working effectively and
efficiently with the hundreds of thousands of ancestry relationships
present in most EC runs.

Previous work [9] has shown the utility of graph databases as
tools for collecting and analyzing large collections of ancestry data
from GP runs, helping to identify key moments in runs, and general
behavioral trends. That work, however, was focused on sections of
individual runs. In this paper we illustrate the use of these tools
as a means of visualizing and exploring entire ancestry trees, as
well as combinations of ancestry trees. We use the Titan graph
database1 along with the Tinkerpop query tools2 to store the parent-
child relationships from genetic programming runs, and to extract
the ancestry trees of specified individuals. We then visualize these
subgraphs using the Graphviz dot graph layout tool.3

In the next section we will describe the test environment used
to generate the data used in this paper. Section 3 describes the ba-
sic graph structure used in these visualizations, including detailed
descriptions of how the rendering of edges and nodes conveys ad-
ditional information about the individuals and run dynamics. The
initial graphs are large enough to be rather overwhelming, so in
Section 4 we describe ways to filter these large graphs into more
comprehensible subgraphs. Section 5 provides examples of our
ability to compare multiple runs side-by-side, illustrating similari-
ties and differences in the run dynamics. We wrap up with some
ideas for future work in Section 6 and conclusions in Section 7.

2. OUR TEST ENVIRONMENT
All the visualizations presented here are on runs using the Clo-

jush implementation4 of the PushGP genetic programming (GP)
system [10, 11], but all of the ideas here could easily apply to al-
most any evolutionary computation (EC) system. The use of graph
databases to capture ancestor lineages is a completely general con-
cept and could be applied to any system that implements a notion
of descent with modification. Some of the visualization specifics
are tied to particular metrics (e.g., the Damerau–Levenshtein dis-
tance between linear genomes), but these could be replaced with
other metrics as appropriate to the application domain (e.g., man-
hattan distances between genetic algorithms bitstrings, or tree edit
distances in tree-based GP).

1http://thinkaurelius.github.io/titan/
2https://tinkerpop.apache.org/
3http://www.graphviz.org/
4https://github.com/lspector/Clojush

1419



Gen 0

Gen 1

Gen 2

Gen 3

Gen 4

Gen 5

Gen 6

Gen 7

Gen 8

Gen 9

Gen 10

Gen 11

Gen 12

Gen 13

Gen 14

Gen 15

Gen 16

Gen 17

Gen 18

Gen 19

Gen 20

Figure 1: Basic layout of ancestry trees, showing parent-child
relationships. Generations are labeled on the left-hand side and
run from generation 0 (the start of the run) at the top down to
the end of the run at the bottom.

One important feature of the PushGP system is the use of lex-
icase selection [7]. One of the design goals for lexicase selection
was the preservation of behavior diversity. The ancestry informa-
tion in the graph databases and in the tree visualizations in this
paper can be used to visually and quantitatively check how well
those goals are being met. One property of lexicase selection is
that it enables the possibility of hyperselection events [5], where an
individual receives an extremely high proportion of the selections
in a given generation. Occasionally, for example, an individual that
"discovers" an important new behavior can receive over 90% of the
selections and consequently be a parent of nearly all the children
in the next generation. These hyperselection events will be visually
obvious in our graph visualizations below.

We have applied these visualizations to a number of different
problems taken from a suite of software synthesis benchmark prob-
lems [6], but in the interest of space we will focus here on a single
test problem: Replace Space With Newline. In this problem the
goal is to evolve a program that takes a string as input and has two
tasks: (a) it should print the input string, with all spaces replaced by
newlines, and (b) it should return an integer that is the number of
characters in the input string that were not replaced. The existence
of these two distinct types of error values will be used in some of
the visualizations as described in Section 3.2.

The details of the system and settings used in these runs are
as described in [6]. There are, however, two parameters that are
directly relevant to these visualizations: The population size was
1,000, and the runs were stopped after 300 generations if a suc-
cessful individual was not found. This means that we were storing
and processing considerable information on up to 300,000 individ-
uals per run. We have also generated visualizations on runs in other
settings where there were over a million individuals; these graphs
are too large to meaningfully include in a paper such as this.

3. VISUALIZING ANCESTRY GRAPHS
Our primary visualization of these EC runs is via ancestry trees

where individuals are represented as nodes, and parent-child rela-
tionships are represented as edges. An example of this basic struc-
ture is illustrated in Figure 1. For a successful run, where at least
one individual has found a solution, we obtain the ancestry tree by
first finding all successful individuals in the final generation. We go
back through the generations to retrieve these individuals’ parents,
grandparents, etc. until we have every ancestor from start to finish.
In an unsuccessful run, where no individual has found a solution
to the problem, we take all of the individuals in the last generation

and create a tree out of their ancestors. The visualization in Fig-
ure 1 captures the basic ancestry structure, but conveys no informa-
tion about the particular individuals, or their relationships. In the
remainder of this section we’ll describe several techniques which
greatly increase information density of the visualizations.

3.1 Edges
As stated previously, edges show the parent-child relationship

in our ancestry diagrams. To increase the amount of information
conveyed in these visualizations, however, we use aspects of the
edges such as color, style, width, and transparency to convey more
information about these runs. First, we use the color and style of
an edge to indicate what operator or combination of operators was
used to create a child:

• Solid & Black: Alternation, followed by Uniform Mutation
• Dashed & Black: Alternation
• Solid & Orange: Uniform Mutation
• Dashed & Orange: Uniform Closed Mutation

The width of an edge is determined by the Damerau–
Levenshtein distance between a parent’s and child’s genome.5 We
use this as a measure of how similar a child is to its parent; the
smaller this distance, the more similar their genomes. Since we
want to emphasize strong parent-child relationships, we set the
edge to be width of the edge to be inversely proportionate to the
distance; if a child is similar to its parent, the wider the edge will
be, and larger distances will result in thinner edges.

The last aspect of edges is their transparency, which we based
on the number children an individual has in this graph. An incom-
ing edge is more opaque if the individual has many children in the
current ancestry tree. This helps us find the parents of individuals
that have many children in the displayed tree since these edges are
more opaque than others.

3.2 Nodes
Just as we adjust aspects of the edges in our diagrams to tell us

more information about the runs, we adjust aspects of the nodes as
well. Starting form a simple rectangular shape, we alter the width,
height, and the color of the node.

The width of a node is based on the individual’s number of se-
lections. This is the number of times an individual was selected
to be a parent. A node that is very wide will have an overall high
number of selections, and thus be a parent of many children; not
all of those children will necessary be displayed in this graph, so
it’s possible to have very wide nodes with few displayed children.
A very wide node is also a clear indicator of hyperselected individ-
uals [5] which often play very important roles in the dynamics of
runs using lexicase selection. The height of a node is based on how
many children an individual has this ancestry graph. Similar to the
opacity of an edge, the more children a node has in this ancestry
tree, the taller the node.

In the following graphs, we illustrate the use of two different
coloring schemes for nodes, each of which conveys information
about the errors (and thus the fitness) of the individuals represented
by nodes. The first, dual coloring, uses color to represent success
on the two distinct types of errors (see Section 2). The second, RBM
coloring, uses restricted Boltzmann machines (RBMs) to compress
the 200 error values into 24-bit RGB color values.

The dual coloring approach uses hue-saturation-lightness
(HSL) coloring based on the “success” of a given individual. The
Replace Space With Newline problem is special in the sense that
5The Clojush system uses linear Plush genomes that are then con-
verted to PushGP programs. All genetic operations act on these
genomes.

1420



Gen 0

Gen 1

Gen 2

Gen 3

Gen 4

Gen 5

Gen 6

Gen 7

Gen 8

Gen 9

Gen 10

Gen 11

Gen 12

Gen 13

Gen 14

Gen 15

Gen 16

Gen 17

Gen 18

Gen 19

Gen 20

Figure 2: Dual Colored (left) and RBM Colored (right) versions of a successful lexicase run (run 0) ancestry tree.

there are two halves of the problem, printing and returning. The
test cases that track these aspects are also split into two sets of one-
hundred cases. We take advantage of this by separating the two
sets of cases and assigning a color to each half, with the color of
the left side of a node based on the printing errors, and the color
on the right side based on the return errors. For a test case to be
passing, there needs to be an error of zero. The hue of one half of a
node is based on the percent of zeros, i.e., successful cases, for that
half. The hue ranges from red (the worst, with no zeros) to yellow
(the best, with all zeros). This coloring tells us how many test cases
an individual solves, but gives no information on how far off it is
on the other test cases. For this we incorporated lightness into the
coloring as well. The lightness of one side of a node is based on the
individual’s total error on that half of the test cases, with higher to-
tal errors receiving darker shading. An example of this is in Figure
2, where the dual coloring graph is on the left-hand side.

One potential concern with the dual coloring approach is that
we are simply counting successful test cases to determine the hue,
and using the total error for the lightness. Both of these are ag-
gregate measures that can obscure valuable details such as which
test cases are being solved. Because lexicase selection bases se-
lection on entire error vectors (instead of, for example, just using
total error), which test cases are being solved becomes much more
important than just how many, or what the total error is. To address
this, we generated a second coloring that used a simple implemen-
tation6 of restricted Boltzmann machines (RBMs) as a dimension-
ality reduction tool [8]. Here we trained RBM autoencoders to map
200-bit vectors to 24-bit vectors, where the inputs were binary ver-
sions of the error vectors where every non-zero value was converted
to 1, and the outputs were interpreted as 24-bit RGB colors. This
allowed us to see valuable relationships between individuals that
were successful on similar sets of test cases.

Figure 2 shows both color schemes side-by-side on the same
ancestry tree from a short, successful run. Both colorings highlight
major changes in the error vectors over time, but in different ways.
In the center of the dual color graph, for example, there is a large
individual that is purple on the left side and green on the right, with
the green indicating a major improvement on the test cases that re-
quire a returned value. It’s also worth noting that the size of this
individual indicates that it received a high proportion of the parent
selections, and was a parent of a substantial number of the individ-

6https://github.com/echen/restricted-boltzmann-machines

uals in the next generation. The fact that the incoming edge is solid
orange tells us that it was created through uniform mutation, sug-
gesting that a fairly small change to the genome led to a substantial
change in the behavior. Five generations later we see a large node
that is yellow on the left and purple on the right. The bright yellow
indicating that it is perfect on most of the printing test cases, with
low total error across these same cases. The purple suggests this in-
dividual is not very successful on the integer return test cases. This
individual’s behavior is thus a “mirrored” version of the behavior
of its purple-green ancestor from five generations earlier.

The RBM coloring on the right hand side of Figure 2 does not
capture the differences between the two types of test cases, but still
reflects the same major changes in its color scheme. Its coloring
also shows more variation in the first half of the run, where the low
brightness in the dual color graph limits the visible variations.

4. FILTERING
While the large graphs of full runs can provide an excellent

“big picture” view of the run dynamics, there is so much informa-
tion that it can be difficult to isolate specific features. We can, how-
ever, extract and visualize subgraphs that focus on specific areas or
events in the runs. The left hand graph in Figure 3, for example, is
the full ancestry of the successful individual from one of our runs,
and contains 22,435 nodes and 35,403 edges. This full ancestry
graph gives us a strong sense of the large scale dynamics of the
run, while the shape of the graph as well as the sizing and color-
ing of nodes highlight some major events in the history of the run.
There are, however, large sections of the graph composed of hun-
dreds of very small nodes that make it very difficult to trace through
and discover what might be the most important paths through that
part of the genetic history.

An obvious approach to this problem is to filter the results, we
have already been using one simple filtering throughout the pa-
per. In all the successful runs that we visualize here, we are only
showing individuals that are ancestors of the successful individ-
ual(s) in the final generation.7 For example, if we visualized every
individual in the run shown in Figure 3 the graph would contain

7Here is one place where graph databases really shine. To extract
this ancestry information from a relational or document-oriented
database would be an expensive series of recursive queries. With
a graph database system such as TitanDB and Tinkerpop, however,
this becomes a simple one line query.

1421



Gen 0

Gen 1

Gen 2

Gen 3

Gen 4

Gen 5

Gen 6

Gen 7

Gen 8

Gen 9

Gen 10

Gen 11

Gen 12

Gen 13

Gen 14

Gen 15

Gen 16

Gen 17

Gen 18

Gen 19

Gen 20

Gen 21

Gen 22

Gen 23

Gen 24

Gen 25

Gen 26

Gen 27

Gen 28

Gen 29

Gen 30

Gen 31

Gen 32

Gen 33

Gen 34

Gen 35

Gen 36

Gen 37

Gen 38

Gen 39

Gen 40

Gen 41

Gen 42

Gen 43

Gen 44

Gen 45

Gen 46

Gen 47

Gen 48

Gen 49

Gen 50

Gen 51

Gen 52

Gen 53

Gen 54

Gen 55

Gen 56

Gen 57

Gen 58

Gen 59

Gen 60

Gen 61

Gen 62

Gen 63

Gen 64

Gen 65

Gen 66

Gen 67

Gen 68

Gen 69

Gen 70

Gen 71

Gen 72

Gen 73

Gen 74

Gen 75

Gen 76

Gen 77

Gen 78

Gen 79

Gen 80

Gen 81

Gen 82

Gen 83

Gen 84

Gen 85

Gen 86

Gen 87

Gen 88

Gen 89

Gen 90

Gen 91

Gen 92

Gen 93

Gen 94

Gen 95

Gen 96

Gen 97

Gen 98

Gen 99

Gen 100

Gen 101

Gen 102

Gen 103

Gen 104

Gen 105

Gen 106

Gen 107

Gen 108

Gen 109

Gen 110

Gen 111

Gen 112

Gen 113

Gen 114

Gen 115

Gen 116

Gen 117

Gen 118

Gen 119

Gen 120

Gen 121

Gen 122

Gen 123

Gen 124

Gen 125

Gen 126

Gen 127

Gen 128

Gen 129

47

0

1 0

035

1

79.5

0

1

46 32

38 40

0

56

1

2

0

272 28

56.5 2

0

0

246

4

1

0

50

16161

126

4

0

20

75.5

590 81.5

64

4684

0

032

4055

3

1 0

24 82

133

43.5

0

43

5 2

3 270

5

0

0 0

56

0

0

38

1

0

2

0

47.5

54

1

0

11

133

40

0 18

0

52 0

4

45.5 83.5

0

1

4

49

0

87

87.5

65

55

1

1

92

68

41

246

4 5 2

01

012

0

66

1

1

13

32

47

38

0

20

67 87

3

1

0

0

39.554 1

10

6537

0 0 5

7

82

0

1

18

0

0

2 0

39

58.5

0

3

285

47

0

3

8

52

60.535

0

39

0

0

40

69190

31 672

2

6

0

0

13

14 4 823 000

0

0

2

32

2

12

100 41

55

4

2

0

18

53

4 32

0

5

1

32

1

1

18

99

0

96.5

8

88

0

25

6

0

1

54.5

29

49

10

2

1

0

35.5 2

67.5 80

3

0

00

11 0

20

0

52

50

0 2 51

47.5

35 12

2

133 61.527

104

0 00

19

0

44

20

4

0

47

20

6

12

0

0

1 0

0

402 2 2 0

1 0

6

56 1310

22

8

0

171

1

95

1

47.5

42

3

0 1

1

0

17

42.5 0

14 7

0

32

0

1

0

8

42

1

0 1

48

2

0

32.5

107

145

30 76

50

95

4345

7372

0

0 3

14

430

0

0

35

0

0 2

0

0

2

54

2 4

5

34

0

1

0

354

8

2

1

1

2

085

58

41.5

161

0

2

4

4

30

0

39

0

5

2 8

0

48

30

25

1

0

26

2 01 430.5 0

2

69

1

7

63 4

49 26 5

2

27

230

64 96

0

73

1

040

1

0

0

0

46 51

016

2

31

0

0

36

72

0

54.5

0

0

3

5

2

0

57

7

29

89

4

4 0

0

2

1

56

2

38

5080 03 3

2

1

0 40 0

4

67.5

1

56

55.5

41.5

4

29

46

45

7

1

0

65

75

0

078

42462

1

0 1

0

0

6

19

0

39 116 04

0

36

39

0

75.5

2

1

590

58

1

2

0

1

88

85 2

1

0

1

517

0

83

0

0

1

1

36

47

3

2

1

64

32 78.5

5

34

90841616 30 30 24 242 48

7

6

3

2

03

183

40

6

149

6

19 47

319

1

8573 4

3 0

0

3 7 1

45.5

119

0

16

8

0

0

0

2

6

5

0 0

65.5

6

0

26

11

0

00

49.5

338

0

31.5

4

5

0

84

37.5

0

1

0

62

60.5

26 71.55

1

53

8

0

02

74

98.5

7

7

0

4

0

2

0

2431

40

61.52

2

5260

51

3

12

0

50.5 83.5

0

0

1

4

34 1

0

1

1

53

0

11

0

6

1

0

3 26

1

0 0

1 4

3

200 2546 2

0

1

0

89 72

6 34

0

37 0

2

32

63

7

1

0

2

6

1

0

49 0 54

0

0

0

17

1

1

1

0

39.5

0

69.5 1

2

69.5

2

5

2225

0

1

0 2 63 37.5

6 1 630

66

0

2

0

0

0

1

0

2

2

49

34.5 0

0

0

243

300

59.5

4

67.5 3

3

5

1

0 44

1 2 0

0

65

1

47

0

66 1

60

4

46

0

48

1

2

1

0

4

6

42

88

0

25

0

1

87.5

100

3

0

1 0

33

0

2

0

0

4

46.5

0

20

1

0

7

0 1

39

48

321

54 1

65

0

5

3

1

77

3

32

38

0

010

0

0

6

33

4

1

0

0 3

0

0

2

2

18 18

5

4

0

1

26017

27

0 0

1

7

2

6

2 82

23

6

6

7 9

1

0 1

0

36

40

52

2

0

49

0

27 3

0

10

19

2

48.5

0

0

0

3

0

20

2 1 1818

01

1

0

0

20

70

0

1

32

0

4 88

0

21 1 1

8

72

0

0

0

5

7

1

041.5

1

0

2 76

21

1

0

54.5 0

1

3 29

1

1

2

2

5

54

69442 93.50

0

0

47

7 0

0

6

0 3

2

7

2

0

75

16

14

4426

0

53

24 9

0

0

2

1

2

73.5

2

0

1

1

6

1

0

3

2

13

2132

0

3 1

17

2

4 0

0 103

021

0

2 080

60.5

51 28

1 2 2

0

0

118

0

0

0

12 2

00

0

9 7879.5

5820

0

0

14

61

17

44

43

2

1 50 031

39

11

36

1

6

4

0

103

8

1

1

0

0

0

0

30

0

66

5

4 12

5

2

0

305 0

1

47

2

3

2

1

0

3

0

29

0

1

4

32 0

0

2

1

0

0

1

1

0

8 0

0

0

6

48

1

0

0 8 4277

73

3

0

4

45

0

601

65.52 41

0 10

49

0

68

2

33

029 1

8

32

4

41 350

5336

1

60

1 11 0

51

00

351

0

0 0

1

1

8

59

01

67

120

26

0

9 7

0

62

0

4

0

91

1

7

0 0

0

80.5

0 1

0

2 35 26

3

82

69

2

69.5

53.5

2

0

1

27

9

66.525

0

26

14

1

0

0

4

0

0

014

0

1

30.5

2

0

0

04

0

1

2

31

0 0

0 920

2

0

0

28 25

22

0

64.5

153.5

6

26

20

2

1

26264458 264

1

2

0 2525

0

1

0 0

24

5

71

8

1

0

21

5

2

4

2

5 0

3

0

1

46

0

0

4

2

39

6

36

0

0

62

2

2

1

0

3

1

1

8

39

0

1

1

0

0

0

0

62

0

1

0

905 54

5

0

29

0

4

0

0

6

8

101

0

42

2

1

70 33

112

0

99

0

81

1

20.5

6

0

0

0

24

34.52 33

86

2

0

79 0

0

1

1 0

75

49

0

4

118

7

70

31

72

0

5

53

3

2

22

0

54

3

0

0 750

1

20

59.5

1

0

2

1

0

0

30

0

4

397

0

99

2

0

0

0

69

15 66

0

14

0

52.5

3 8

0

64

56

1

0

5

1

2

1 0

1

3

0

7

1

0

0

64

1

3

1 62.5

10

2

0

2

0

1

11

73

4

1

10

00

1

1

1 0

0

1

61.51

1

0

00

2

7

7 5

0

0

1 110

52

0

0

20 1540.5

36 2

0

65

0

112

01 1 1

6

4

6

0

5

0

3

54

44

2

1

8

54.5

2

2

3

72

0

10

11

3

1

0

8

1

8

0

3

66

2

7

4

34

3

0

0

24

57 5

88

67.5

04

82

5

1

6

0

1

5

1

56

86

59

04 01

15

705

5

1

99

62

1

1

0

0 131

1

25

878

0

0

43.5

18

21

4

6

0

1

0

4

015.5

2

01

0

1

0

35.5

2

3

0

2

16

1

85.5

2

2

4

0

0

5

2

2

0

1

0

41

0

00

0

95.5

67

0

12.5

1

0

0 61

5

0

2

0

48

10

1

2

30

0

0

10

0

6

14

0

74

59

0

34

34

5

0 0

6

2

12.5 2

84.5

04

0

0

4

1

1

1

1

11

0

91 41 4846

22

5

5

8

29 29 26 26

1

91 73.510 66.5

85.513 00

35

333 42 8 610

34 52

00 0 5 1

0

25

0 666.5

1 60.5 0

107 9637

4024

85411 64

49

0 6 12

0 0

1

0

1

100 1

40 11147 1

56.5 23756 3

2 52.5102

362 513

0

51

531 661 1 12

236.54

0 0

1

155.5 0

00 0

00 33

740

18

012

94.5 1 0

10523 10

60 21

70 5

0 10

00 0

4 0 28.5000 0

45 36105 7

6

0

0

50 0 39

414

1

60

0

0

212183

27

99

1

80

0

13 1

96.5

0

4

0

34 34

4 4

Figure 3: Unfiltered (left) and filtered (right) versions of a successful run (run 1), both with the same color map.

1422



over six times as many elements, with 130,000 nodes and 219,541
edges. Most individuals in evolutionary systems aren’t ultimately
ancestors of individuals in the final population; they’re evolutionary
“dead ends”, either because they have no children, or their descen-
dants eventually fail to have children. All the graphs in this paper
use this type of filter to substantially cut down on the number of vi-
sualized nodes, only looking at ancestors of successful individuals
or, in the case of unsuccessful runs, only looking at ancestors of in-
dividuals in the final generation. This typically reduces the number
of nodes in a generation (row of the graph) from the original 1,000
to 300 or less, and sometimes down to a few dozen.

As discussed above, while this filtering strongly focuses the
visualization, this still can leave us with too much information if
our goal is to trace key paths through the history. Here we demon-
strate the use of a combination of ancestry information and genome
distances between parents to substantially tighten the focus of the
ancestry graphs. The key idea, which grew out of observations of
our early graphs, is to use a distance metric to determine which par-
ents are contributing “substantial” genetic material to the resulting
child. This allows identification of crossovers where one of the par-
ents contributed the preponderance of the child’s genetic material.
If we filter out parents that are making limited contributions to their
children’s genetics, then we end up recursively removing many of
their ancestors as well, profoundly thinning the graph.

Unfortunately there’s no easy way to guarantee that any non-
zero contribution, however small, might not in fact be crucial to the
behavior of the child. A parent might only contribute one instruc-
tion to its child, but that could be the vital piece that leads to a so-
lution. Even worse, it’s possible that the presence of an individual
could have had a subtle but important impact on the dynamics of
a run even if that individual never directly contributed any genetic
material to the eventually successful individual. Acknowledging
those complexities, we have still found it useful to filter ancestry
trees, recognizing that we might need to “unfilter” some individu-
als if further analysis suggests that their contributions were more
substantial than initially expected.

The method used here was based on the Damerau–Levenshtein
distance between the parent and child genomes. Our filter-
ing algorithm was fairly simplistic: Assume we have two par-
ents, p and q, and a child c such that a = DL-distance(p, c),
b = DL-distance(q, c), and s = genome-length(c), and assume
without loss of generality that a ≤ b. Then filter out parent q if ei-
ther a < 0.2× s or b ≥ 2× a. Thus parent q will be filtered out if
parent p is particularly close to the child, or if parent q is more than
twice as far away from the child as parent p. The choices of the
constants 0.2 and 2 are obviously somewhat arbitrary, but appeared
to work reasonably well on these datasets. There are, however, ex-
amples where a filtered parent did in fact contribute a significant
number of instructions to the offspring, so one would need to be
careful in not making overly broad assumptions based on an indi-
vidual not being in the filtered version of a graph.

Returning to Figure 3, the right hand graph is a filtered version
of the left hand graph. Both graphs use the same RBM coloring, so
it is in many cases possible to pick out corresponding individuals in
the two graphs. In the filtered graph, however, it’s entirely possible
to trace every relationship from the beginning of the run to the suc-
cessful individual 130 generations later, where this is unfeasible
in the unfiltered graph. The filtered graph has 1,597 vertices and
1,794 edges, roughly 20 times fewer than in the unfiltered graph,
and roughly 100 times fewer than in the full graph.

Comparing the two graphs reveals several important events and
phases in the run. Both graphs show an initial “settling out” phase,
where most of the initial random population contributes little or
nothing and there are quite a few very strong selection events as

evidenced by the variety of wide nodes in the early generations.
Starting around generation 20, however, the dynamics in both runs
start to become more complex, with both graphs moving to more
individuals in each generation and a more complex edge structure.
While the unfiltered graph remains quite wide up to generation 56
or so, the filtered graph starts to thin out, leading to a fairly small
set of largely linear “threads”. In generation 50, for example, the
unfiltered graph has 305 individuals out of the 1,000 individuals
in that generation, whereas the filtered graph only has 13 individ-
uals. While the nodes in those threads are quite small, several of
the threads are sequences of individuals whose colors are similar
within the thread, but different from the colors in other threads.
This suggests (and additional analysis of the data in the database
further supports) that at least some of these threads may represent
sub-populations that are focusing on different parts of the problem.

Moving further into the run, both graphs show a significant
change by generation 63, with a series of hyperselection events sug-
gesting that there is some sort of discovery. In the unfiltered graph
this expresses itself as a strong narrowing of the graph, as the hy-
perselection events substantially reduce the number of individuals
in those generations that go on to be ancestors of the successful
individual. In the filtered graph the representation is almost the op-
posite, where the few threads give way to a “knot” of more individ-
uals with much less linear ancestries with more complex mixing.
After a while this settles down, with the unfiltered graph widening
back out and the filtered graph returning to a decreasing number of
mostly linear ancestries. At the end of the run there are visual indi-
cations of major discoveries that lead to large hyperselection events
that dominate the dynamics in the last few generations.

5. COMPARING RUNS
In this section we will demonstrate the ability to graph multi-

ple runs side by side for comparison, similar to the unfiltered and
filtered graphs in Figure 3. We will first compare three successful
runs, and then a collection of four different runs, two of which were
successful and two of which were not.

5.1 Successful Runs
Figure 4 shows the filtered graphs from three successful runs

(from left to right, run 1, 99, and 6) using the same RBM color
scheme for all three.8 The shared color scheme allows us to see
similar individuals (in terms of error vectors) across multiple runs.
All these runs, for example, start with green nodes, suggesting
those individuals have similar error vectors. It is interesting to note
that runs 1 and 99 both have several very strongly selected nodes in
the first 15 generations that introduce new but related colors, with
both runs having both blue and pink nodes. Run 6, on the other
hand, remains primarily green for quite a bit longer and does not
have many highly selected individuals until around generation 40.
Some of the new colors introduced in run 6 are blues that look sim-
ilar to nodes in runs 1 and 99, but there are also beige nodes that
appear different from the early nodes in the other graphs.

All three runs share some substantial large scale features. All
have initial “settling out” periods, which eventually develop into a
relatively small set of largely linear lineages. All have one or more
“knots” where there are higher degrees of connectivity for several
generations before returning to the more linear ancestries. The end
of all three runs feature several very strong hyperselection events.

8The leftmost graph in Figure 4 is the same data as the rightmost
(filtered) graph in Figure 3 above, with a different RBM coloring
and a slightly different layout.

1423



Gen 0

Gen 1

Gen 2

Gen 3

Gen 4

Gen 5

Gen 6

Gen 7

Gen 8

Gen 9

Gen 10

Gen 11

Gen 12

Gen 13

Gen 14

Gen 15

Gen 16

Gen 17

Gen 18

Gen 19

Gen 20

Gen 21

Gen 22

Gen 23

Gen 24

Gen 25

Gen 26

Gen 27

Gen 28

Gen 29

Gen 30

Gen 31

Gen 32

Gen 33

Gen 34

Gen 35

Gen 36

Gen 37

Gen 38

Gen 39

Gen 40

Gen 41

Gen 42

Gen 43

Gen 44

Gen 45

Gen 46

Gen 47

Gen 48

Gen 49

Gen 50

Gen 51

Gen 52

Gen 53

Gen 54

Gen 55

Gen 56

Gen 57

Gen 58

Gen 59

Gen 60

Gen 61

Gen 62

Gen 63

Gen 64

Gen 65

Gen 66

Gen 67

Gen 68

Gen 69

Gen 70

Gen 71

Gen 72

Gen 73

Gen 74

Gen 75

Gen 76

Gen 77

Gen 78

Gen 79

Gen 80

Gen 81

Gen 82

Gen 83

Gen 84

Gen 85

Gen 86

Gen 87

Gen 88

Gen 89

Gen 90

Gen 91

Gen 92

Gen 93

Gen 94

Gen 95

Gen 96

Gen 97

Gen 98

Gen 99

Gen 100

Gen 101

Gen 102

Gen 103

Gen 104

Gen 105

Gen 106

Gen 107

Gen 108

Gen 109

Gen 110

Gen 111

Gen 112

Gen 113

Gen 114

Gen 115

Gen 116

Gen 117

Gen 118

Gen 119

Gen 120

Gen 121

Gen 122

Gen 123

Gen 124

Gen 125

Gen 126

Gen 127

Gen 128

Gen 129

47

0

10

035

1

79.5

0

1

4632

3840

0

56

1

2

0

2 7228

56.52

0

0

246

4

1

0

50

1616 1

1 26

4

0

20

75.5

59 081.5

64

4684

0

0 32

4055

3

10

2482

1 33

43.5

0

43

52

3 270

5

0

00

56

0

0

38

1

0

2

0

47.5

54

1

0

11

1 33

40

018

0

520

4

45.5 83.5

0

1

4

49

0

87

87.5

65

55

1

1

92

68

41

2 46

4 5 2

0 1

0 12

0

66

1

1

13

32

47

38

0

20

6787

3

1

0

0

39.5 541

10

65 37

00 5

7

82

0

1

18

0

0

20

39

58.5

0

3

285

47

0

3

8

52

60.5 35

0

39

0

0

4 0

69 19 0

31 672

2

6

0

0

13

1448 2 30 0 0

0

0

2

32

2

12

10041

55

4

2

0

18

53

432

0

5

1

32

1

1

18

99

0

96.5

8

88

0

25

6

0

1

54.5

29

49

10

2

1

0

35.5 2

67.580

3

0

00

110

20

0

52

50

02 51

47.5

3512

2

1 3361.5 27

104

0 0 0

19

0

44

20

4

0

47

20

6

1 2

0

0

10

0

4022 2 0

10

6

5613 10

22

8

0

17 1

1

95

1

47.5

42

3

01

1

0

17

42.50

147

0

32

0

1

0

8

42

1

01

48

2

0

32.5

107

1 45

3076

50

95

43 45

7372

0

03

14

430

0

0

35

0

02

0

0

2

54

24

5

34

0

1

0

3 54

8

2

1

1

2

0 85

58

41.5

161

0

2

4

4

30

0

39

0

5

28

0

48

30

25

1

0

26

2 0 14 30.5 0

2

69

1

7

634

4926 5

2

27

23 0

6496

0

73

1

0 40

1

0

0

0

46 51

0 16

2

31

0

0

36

72

0

54.5

0

0

3

5

2

0

57

7

29

89

4

40

0

2

1

56

2

38

50 8 0 03 3

2

1

04 00

4

67.5

1

56

55.5

41.5

4

29

46

45

7

1

0

65

75

0

0 78

42 46 2

1

01

0

0

6

19

0

391 1604

0

36

39

0

75.5

2

1

59 0

58

1

2

0

1

88

85 2

1

0

1

5 17

0

83

0

0

1

1

36

47

3

2

1

64

32 78.5

5

34

9084 1616 30 3024242 48

7

6

3

2

0 3

18 3

40

6

149

6

1947

31 9

1

8573 4

30

0

37 1

45.5

119

0

16

8

0

0

0

2

6

5

00

65.5

6

0

26

11

0

00

49.5

3 38

0

31.5

4

5

0

84

37.5

0

1

0

62

60.5

26 71.55

1

53

8

0

02

74

98.5

7

7

0

4

0

2

0

24 31

40

61.52

2

52 60

51

3

12

0

50.5 83.5

0

0

1

4

34 1

0

1

1

53

0

11

0

6

1

0

326

1

00

14

3

2 00 2546 2

0

1

0

8972

6 34

0

370

2

32

63

7

1

0

2

6

1

0

490 54

0

0

0

17

1

1

1

0

39.5

0

69.5 1

2

69.5

2

5

2225

0

1

0 26337.5

6 163 0

66

0

2

0

0

0

1

0

2

2

49

34.50

0

0

243

300

59.5

4

67.53

3

5

1

0 44

1 2 0

0

65

1

47

0

66 1

60

4

46

0

48

1

2

1

0

4

6

42

88

0

25

0

1

87.5

100

3

0

10

33

0

2

0

0

4

46.5

0

20

1

0

7

01

39

48

321

541

65

0

5

3

1

77

3

32

38

0

010

0

0

6

33

4

1

0

03

0

0

2

2

18 18

5

4

0

1

26 0 17

27

00

1

7

2

6

282

23

6

6

79

1

0 1

0

36

40

52

2

0

49

0

273

0

1 0

19

2

48.5

0

0

0

3

0

20

2118 1 8

0 1

1

0

0

20

70

0

1

32

0

488

0

2 11 1

8

72

0

0

0

5

7

1

041.5

1

0

276

21

1

0

54.50

1

329

1

1

2

2

5

54

69 44293.5 0

0

0

47

7 0

0

6

03

2

7

2

0

75

16

14

4426

0

53

249

0

0

2

1

2

73.5

2

0

1

1

6

1

0

3

2

13

21 32

0

31

17

2

4 0

0 103

0 21

0

20 8 0

60.5

51 28

12 2

0

0

118

0

0

0

122

0 0

0

9 78 79.5

58 20

0

0

14

61

17

44

43

2

1 50 031

39

11

36

1

6

4

0

103

8

1

1

0

0

0

0

30

0

66

5

412

5

2

0

30 50

1

47

2

3

2

1

0

3

0

29

0

1

4

320

0

2

1

0

0

1

1

0

8 0

0

0

6

48

1

0

0842 77

73

3

0

4

45

0

60 1

65.52 41

0 10

49

0

68

2

33

0 291

8

32

4

41 35 0

5336

1

6 0

11 10

51

00

351

0

00

1

1

8

59

01

67

120

26

0

9 7

0

62

0

4

0

91

1

7

00

0

80.5

0 1

0

235 26

3

82

69

2

69.5

53.5

2

0

1

27

9

66.5 25

0

26

14

1

0

0

4

0

0

014

0

1

30.5

2

0

0

04

0

1

2

31

0 0

0920

2

0

0

2825

22

0

64.5

153.5

6

26

20

2

1

26 264458 264

1

2

02525

0

1

00

24

5

71

8

1

0

21

5

2

4

2

5 0

3

0

1

46

0

0

4

2

39

6

36

0

0

62

2

2

1

0

3

1

1

8

39

0

1

1

0

0

0

0

62

0

1

0

905 54

5

0

29

0

4

0

0

6

8

101

0

42

2

1

70 33

112

0

99

0

81

1

20.5

6

0

0

0

24

34.5 233

86

2

0

790

0

1

10

75

49

0

4

118

7

70

31

72

0

5

53

3

2

22

0

54

3

0

075 0

1

20

59.5

1

0

2

1

0

0

30

0

4

39 7

0

99

2

0

0

0

69

1566

0

14

0

52.5

38

0

64

56

1

0

5

1

2

1 0

1

3

0

7

1

0

0

64

1

3

1 62.5

10

2

0

2

0

1

11

73

4

1

10

00

1

1

10

0

1

61.51

1

0

0 0

2

7

7 5

0

0

1110

52

0

0

20 1540.5

36 2

0

65

0

112

01 1 1

6

4

6

0

5

0

3

54

44

2

1

8

54.5

2

2

3

72

0

10

11

3

1

0

8

1

8

0

3

66

2

7

4

34

3

0

0

24

575

88

67.5

0 4

82

5

1

6

0

1

5

1

56

86

59

04 01

15

705

5

1

99

62

1

1

0

0 131

1

25

878

0

0

43.5

1 8

21

4

6

0

1

0

4

015.5

2

01

0

1

0

35.5

2

3

0

2

16

1

85.5

2

2

4

0

0

5

2

2

0

1

0

41

0

0 0

0

95.5

67

0

12.5

1

0

0 61

5

0

2

0

48

10

1

2

30

0

0

10

0

6

14

0

74

59

0

34

34

5

00

6

2

12.5 2

84.5

04

0

0

4

1

1

1

1

11

0

91 4148 46

22

5

5

8

29 29 26 26

1

91 73.5 1 066.5

85.5 130 0

35

3 33 42 8610

34 52

00 05 1

0

25

0 6 66.5

1 60.50

1079637

40 24

85 41164

49

0 612

0 0

1

0

1

100 1

401 1147 1

56.5 237563

252.5 102

36 2 5 13

0

51

53 1 6611 12

236.54

0 0

1

1 55.50

00 0

003 3

740

18

012

94.5 10

1052 3 10

6 0 2 1

705

01 0

0 0 0

4 0 28.5 000 0

4536105 7

6

0

0

5 0 039

414

1

60

0

0

21 21 83

27

99

1

8 0

0

131

96.5

0

4

0

34 34

4 4

0

1

2

29

99

8 0

0

88

176

17010 0

010

4

50 1661 5

223.5 2162

2

1086 2

170 1 3

34.5

3

8

6

0

1

98

31

3

3148

3

230

35 6773 3 64.54 4

5

1

6

134 2

17

0 78

5

1

0

106

1

69.5

163

224.5 2

3

4357

6

0 0

1

2123

66

1473

12

57

54

10

20 10

881501

2

108.5

10878

2 75

53

2 0

106

0 22

0135.5

0

724

13

4

96126

31 35

7

30

6

312 4

15

752

113

2 78

10 14113

144147

0

1 64

6262

76

1

136

72

99.5

1

5

62

2

74

160.5 30

10

156

0

1 463

3 51

6657122

6

3 17

2

120

92

2

101 117

1

055

49

145

989

0

4

43 10

98 188134.5

64

65

8 8 10 88 12 511 3434 441 1 2 2 84346550 0 3 3 44 7 756561 03535 094646 0381515 500 6 70 10 1010 0 0 511 569 1 128 701010 0 74

2 133

74335

8

1651

9

1

1135

25 0

2 1

2

66

2

3

0

107

90.5

1221

232

213

1

43 0

361107 01 1

56

2

0

119

7 12

190

2

1422

11112

5818

82 1

2

52

0

0

33

1

52

21

113

10

13

184

54 144

9

3

27

119.5

92174

112 117

3

94.5 34

0

0 50

12 6

1 90 1

31

103.5

132

1

52

32

860

0

061

3762

78 121

6

1

104

1 3 55

584

2

05

0 1022

116

454

0 163

10

2 2

3

105

1171

7

45 1

4

60

114 712 0

2 10

105

66 2 01 132.5

1

767

3

1

0

4 69 4

0

40

88

89

71 3

45 5091

077.54

140

111

15

0 82

02

2 1

0

1

1 76

2 1711

01

2

0

4 104

41.5 16

125

38

2

0

1755

5

1

151

1385150

2

50119 3

0175

34

34 4

215640

8120

13

98

2651 12801

1

251 32 24

2

3 4649

111 95

0

1

3

99.5 3

47625

90

44

79

36080

143

1

84

135

461

10745.5

4

3 10122

77

617

0

92 177

00 121.5 9

171 56.5

60

14 2

131

118.5

102

42

14 8

169

40

1 0 42

85

3 4

1163

4675

34

9928

1

3

2

5

1101

125 55

5

77

0

0

49

034

7

70137 103

2144 0

61 7

1

85

18

20

0

892 1

123

6106.5

6 118

11 2

30 60

19

139

73

72

10

2

0132

01

1

00

0 41622

0

5 3

60079 30

62

0

1

82

0

1

4

0

1 82

42

0 1240

9752

41

3

1340

213

2

12

1

3

72

39137

29.5

0 2 1

145 3

4

41 20

0

46 7 5

80

10

691

673

35 3

6

114

71 6

19

159

2 173

23

2

1 105

3

53.5

113 11

2

0

0

0

62105 30111

1302 100

4

102.5

1280

37

74

40.560

128.527

02

1

110

7

6920

1

97 0

7924

2

132.5

1840

2314 39.5

0

6

2 1113.5

1391170

4 62

17

0 53

178

1 90

214861.5

5

76.51

2

33

0

1

2

0

99 5

44

137 012

610

1163 106

7

29

0

037.5

56 150

11

1

5978

5

2

8

1011

5 71

88 75 52

51 33 039

7 3 3

117.5

28

54

2

5

9

0

3 3

8411 108.5

35

9

121 0

1 110

45

3

173

145.5 0

129 2120

0

2

0

88

1

77

383 2

17

48

9946

2

1

1

691

0

1

40

123

123

4 47

3

68

5

71

6737 107

2

011 47

693

61

13

4

11

13

2 56 6

55

0 63

93.58

110 0 132

2

83

5

36 345

13478

3 60

36 11

1

0

1

98

0 30117 875022 3 11 110036 9.5 1021036 1 9

24

1

1 91

150

124 131 106

2133103

513

1

3

94 0

31041

60

69

1

3

17

41

920

0 25

82

5

0

36

97

63

70

361 21

1 1

1

5

0

0

52

0

64

0 3

42.5 77

125

98

1

3

96

74.5 161

102 1

6

89

1 0 66 8

86 96 3

116.5

23 2104256

31

44 227 24

4176.5

1 16

7 60

2 98 0

36 0

118

138 164

56

12 3

90

99

65 3

1

9

2173 118

6 02

137

141

95

110

58 68

1

3

1

3

107

21

257 20 611 94 31132 8166

123 57

118

0

0 1

1 69

4 6

0

93

188

62

3

91

75 0

104

4

10129819

2

100

2

149.5

90

2

14520 20

89

0

1101

3

321

1

142

4

2

2

2 1

0

61

1

41 24

6

183

113

3655 1

4

1

2

116

3

182 01

40

0

3

184

6

82 130.5

1

2

1

057 0

31

2118

2 114 24

7990

82

5

12287

3

1

131 31118

53 56

721 01 3

18

229911 64 01

115

9

5

22 1 396

34

0

93

60

135

68 2

21

0

6

103

0

8175

0

78 2

0 44

229

51

45

2

27

89

55

110

1

53

38

3 5 0

212

153

0

38 50

561

153

2

8635 21

1

42

2

2

36

31 4

2

0

58 100

1

95

0

78

2 101

81

135.5

0

3

6

2

0

4

0

1 4 46

64

21

176

3 1 20

103

7

80

116

25

665

0

60

49.5

2 4060

44

29

2552

0

91

2

1 2

64 28

2

02

6

109.59

7

32

4 42

0101 92

4 10 7

1

429

26 0

146131

85

0

48

103 0

64

149 70

56 96

3

102

5

840

55 4

62

10 1

74

671

53

0 2

25

168

311

3

11 1

0

15

1

76 08

4 35 92

142 126

2

1 591 3

6213

5

2 1

0 2

162 102

49.5

122

0 106

1

2

3

0

199

50 1350 6

0

22 0

7

1 131.5

8

216 1

013

1 41

5136

4242

4

426

8 102

0

106140

3 56

3109 1

4

4

1

28 11157

8

88

1123142119.5

1

2 0

127.5 0

83

56

71 1

118

139

1 55

67

95

0

2

1

147

30

04 8

136

132

088

5 2

113 54

3

0

10

0

38 1

98

83

0256.5

40 1

32 12

6

23

1103

31246

95

2

1

78

74

2 149

2

86

2

2

0

7

0 8 435

1

1

70

2 2 2

5

117

130.5

2 16 7

2

137

6

139

2

136

47

123

16

1256

54

1

16

1310

7107

1

8

76

38

5 9

2 181 19

0

1

2 1

1 194

39

0

3 208.5

57

45

7

4

0 11

1

14

164.5

0

56.5

158

2

95 72

55 99.5

151 42

1

148.5

0

3

32

049 1 82

721 5

27

69145 1

497150.5

10

230

1

118

46 1

1

0

0

2

148.5136

2

0

116

3564

48

96

96

0

127 186.52

93

128

047

64 67

36.5

57

1

0 0

0

0

50

118

24

0

122

0

44114

134

1110

2

972

3 0

0

0

140

7

0

2

0

2

1

38

100

190.5

3

0

88

57

2

7

1

3

37

2 1

0

132

0

2

21

103.5

2

28

2

2

0

1

5

100

1

6

20

1

04

2

6

56.5

1

1438 17 17

2133

0

1

01

0

10

0

1

0

132

0

10

64

95

0

555

0

107

0

1

10

0

3

038

24

0

0

1

2

1

72

4

0

26

1

261

68

23

19

0

0

0

145.5

11 0

50

143

1

0

1

0

140

109.5

7

31

1

2

153

42

8

4

1

3

75

232

0

4 41

37

2

175

0

94

1

1

2

8

0 0

3

1

82 21 21

5

0

1

0

1

2

51

92

2

0

5

1 14

0 0

0

0

1

20

123.50

0

0 122

0 58

099.5

1

0

5

35

83 121

53

17

0

120.5

117

0

0

131.5

113

76

3

18 1

36

98

0

3

3

7

0

0

1

0

1

0

1

1

88

1

2

2

13

1600

12

2

165

3

1

2

0

11 2 2 22 00 01 1

8

2

0

164

0

3

2

85.5

0

1

1

4

21

6

55

00

5

1

3

32

2

3

7

5104

2

0

037

131

2

7

0 2

119

18

4

45

1 7

28

1

1

1

96

1

794 9

1

0

1

75

1

74

160

0

0 1

4

1

0

2

0

1 3

60

133

145

78

4

602 31

1

01

181

0 1

123

1

0

1

53

84

0

2

0

3

76

54

0

0

70

106

33

13

1

64

1

55

106.5

0

4

0

0

83 568

0

48

0

2

9172.5

0

1 2

0

13

1

1

1

63 2

1

2

3 3

50

4

0

00

2

1

2

0

1

62

1

21

1

1

27

1

19

894

0

0

0

3

121

1

00

31

73

0

05

30

1

1

0

0

2

3

1

0

3

1

91.5

30

0

2

129

2

5

1 29

0

49

0

0 4

0

1

2

163

31.5

129

1

38

2

222

1

1

4

04

4 4

2

11

1

2

0

0

0 1

3

3

0

0

5

14

0

2 1

91.5

1

24

0

44

0

2

0

51

57

2

1 56

34

2

20

97

0

1

41

0

0

15

2

4

0

0

99 1

3

142

2

0

0

6

2

0

1

15

2

0

0

4

2

39

0

0

0

3

0

33

157

3

28

110

2

50

40

1

1414

45

14

1

2

92

0

0

1

90

166

90 12

116

14

0

1

7

6697

2

1

227

78

2

26

3

1

16

0

0

2

2

4

1

0

61

0

22425

100 7

0

0

0

4

1

1

83

0

2

1

0

89

3

10

144.5 1

0

2 53.5

0

7

1 1

1

62

4

2

0

1

57

0

0

0

0

43

6

0

4638 3826

104 0

2

28.5

2

1

2

11

24

90

90

1

0

0

01 0

213

7

104

6 00

2

67

94.5

230

1 080

49

26

0

38

5

64

83

2

54

0

0 10

25 3449

60

3

42

3412

0

0

62

0

28

53

73

2

1

89 63

25

0

4

0

37

24

6

3

2

5963

2

66

0

1

1

0

3

0

3

0

9

1

1

1

51

0

0

0

8

1

97 00 2

2 551

0 0

1

79 28

0

60.5

0

16

80.5

44

2

0

0

5

129

0

25

113

0

0

0

36.50

1

80

1

3

2 00

1 3

79

7

6

1

128.5

0

22 0

24

1

56

891

2

2

78

6

0

0

07

64

58

1

2

01

2

0

0

1

0

36071

1

51

0

33

1

14

2

26

1

31.5

13

4613

38

0

12

0

0

1

067.5

52520

3

0

1

5967.5

04

24

1 1

6

0

109

051

98

2

4

67

1 1

1

4

10

1

1

381

1

13

00

0

6

27

00

0

105 4

12

49

0

3

0

3

11

42.5 622

0

957

1 2 1

69

1

0

1 92

114

1

1

37

0

1

0

0

2

0

51

3 40 18002 07

4

420

3

74

0

81111 82228

2

2

1

14

5

0

0

11

66 31

29

0

90

0

0

2 2

0

1

87

11

0

6 127

1

80

36 2

1

57

36 36 105.518 198

0

0

1 0

30

36

1

6

112.5

68

130

1 29

2

0

1272

0

1

2

5

071

0 5

19

1

161

5

922 25

0

1

1

1

0

012424

54 35

4

41

3

1

5

53

1

1

1

7

48

0

1

115

9

37.5

5

6

238139 1950

8

141

7

0

7

34

32

0

0

8 3228 28 8 8

1

0

2

38

4

39

01

1

28

1

112

0

0

1

51

5

42

63.5

8

108 1

10

021

1

52

2

41

61

1

02

0

8

75

1

1

54

148

0

1

6

128.5

83

52 2

7

46.5

74

0

3

5

1

1

73

2

3

1

109.539

91.5

12

2

0

6

1

3

2

104.5

119.5

1

0

0

0

26

0 1

1

1

1

0

04

6

4 3

2

2

1

2

0

0

28

0

14 10

18

13

361

124.5

7

3

2

1

4

0

7

1

80

89

0

9

4

0

86.5

10

1

7

17.5

0 1 3

0

0

0

3

10

0

188

5

26

1

62.5 56

4

015

46

59

12

0

67

1 3

1

2 115

2

0

53

4

72

2

4

2

2

2

1645

114

80.5

7

16

22 0

0 0

100

126

1

0 130.5

1

2

3157 2

0

1171

0

4

0 35

91

3

47

102

17

139.5

112

0

75

1

0

2

1

104.5

5 59.5

0

115

2

0

128.5

108

1

20

20

97.5 58.5

17

00 20

0

0

11

83

0

74 6

0

8892.54 26

630

6

5

8

98.5

40

28

83.5

333

0 11

130.5

0

2

15

4

34

31

15

64.5

14

0

8

17

101

44

0

0

7

6

0

1

4

148.5

1

92

3

0

6

71.5 7

75

9

3

1

191

1

5

66

045.5

1

52

51

25

95

4

18

271

3

23.5

0

1

0

160 27

6 2

2

0

0 1

3

0

19

0

187

085 2121.5

88.5

6

105.5

62 1

28

38

68

12

2411

0

0

225 0

2

118.5

0 67 0

7 10 7 4040 73 1111 7171 3 11 2929 111111 2828 14 12 4040 2020 13 4444 7 4242 5757 1 10 4444 9 10 10 22 3131 10 9 9 6767 4949 14 3232 8 4 3939 3131 1515

67.5

3

1

2 0

161

129

0

102.5

08 27.5

5

43

2

25

6 11

1

2

3

36

0

5

43 16

4721

100

1

1

130.5

2113

2

4

4

1 9 5

0 3

6

15028

0115.5

01

72.5

Figure 4: Filtered ancestry graphs of three successful runs (left to right, runs 1, 99, and 6), all with the same color map.

1424



Figure 5: Full ancestry graphs of 4 different runs (left to right, runs 92, 2, 1, and 99), all with the same color map.

1425



5.2 Successful vs. Failed Runs
Figure 5 shows the full unfiltered ancestries for four different

runs (from left to right, runs 92, 2, 1, and 99). The leftmost two
(runs 92 and 2) were unsuccessful, so these graphs show the an-
cestors of all the individuals present in the final generation.9 Runs
1 and 99 were successful and are also visualized in Figure 4. All
four graphs use the same dual color scheme, which shows that in
all four cases similar individuals are discovered early that are very
successful (bright yellow) on the integer return cases (right hand
side of nodes) and have similar (purple) success rates on the print-
ing cases (left hand side of nodes). The most selected individuals in
the initial random populations for the two unsuccessful runs have
very dark colors on the right hand sides of their nodes, indicating
that the most selected initial individuals had very high total error
on the integer return cases.

After the initial settling out, run 2 has no significant hyperse-
lection events, and no substantial changes in the visual structure of
the graph. The other three runs, however, have a variety of highly
selected individuals, and associated changes in the shape of their
graphs. It’s possible, therefore, that run 92 might have eventually
discovered a solution if given more generations, where run 2 seems
much less likely to make progress.

6. FUTURE WORK
Two major issues in this work so far are the static nature of

the figures and the challenges of displaying and working with such
large, dense graphs. Static visualizations are not inherently bad,
and are obviously important for things like print work. There is,
however, only so much data that can be compressed into static vi-
sualizations such as this, and it would certainly be nice to be able to
interact with the graphs dynamically, clicking on nodes or edges to
access additional information that is in the database, but not directly
or exactly displayed. A dynamic display such as used in the Deep-
Tree exhibit [2] or using tools such as Gephi10 or Google Maps [1]
might also make it easier to move around in very large graphs.

A further application of these ideas would be to use these
graphs to compare the dynamics of evolutionary systems using, for
example, different selection mechanisms. Previous research [9] has
compared the dynamics of sections of runs using tournament selec-
tion and lexicase selection; this work could be extended to compare
the ancestry graphs of entire runs.

7. CONCLUSIONS
Here we have demonstrated the ability to collect and visualize

ancestry data from large genetic programming runs. The resulting
graphs provide valuable information about both the overall dynam-
ics of the runs, as well as highlighting specific important events in
the evolutionary process, such as instances of hyperselection and,
through filtering, the existence largely independent subpopulations
focusing on different test cases. Use of these sorts of visualizations
have proved valuable in understanding properties of important tools
such as selection operators and can help guide the development of
new techniques based on a more detailed understanding of the be-
havior of evolutionary systems.

8. ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grants No. 1129139 and 1331283. Any

9In fact we have removed the last two generations from the un-
successful graphs since those have many more individuals than the
earlier generations, and their presence distorts the layout.

10https://gephi.org/

opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Thanks to William Tozier for numerous suggestions and sup-
port. Thanks also to the members of the Computational Intelligence
Lab at Hampshire College for ideas and feedback.

9. REFERENCES
[1] A. Agarwal. Embed large pictures with Google Maps

Viewer, September 2012. [Online; accessed 3-April-2016].
[2] F. Block, M. S. Horn, B. C. Phillips, J. Diamond, E. M.

Evans, and C. Shen. The DeepTree exhibit: Visualizing the
tree of life to facilitate informal learning. Visualization and
Computer Graphics, IEEE Transactions on,
18(12):2789–2798, 2012.

[3] B. Burlacu, M. Affenzeller, M. Kommenda, S. Winkler, and
G. Kronberger. Visualization of genetic lineages and
inheritance information in genetic programming. In
Proceedings of the 15th annual conference companion on
Genetic and evolutionary computation, pages 1351–1358.
ACM, 2013.

[4] A. Cruz, P. Machado, F. Assunção, and A. Leitão. ELICIT:
Evolutionary computation visualization. In Proceedings of
the Companion Publication of the 2015 on Genetic and
Evolutionary Computation Conference, pages 949–956.
ACM, 2015.

[5] T. Helmuth, N. F. McPhee, and L. Spector. The impact of
hyperselection on lexicase selection. In GECCO ’16:
Proceedings of the 2016 Conference on Genetic and
Evolutionary Computation, July 2016.

[6] T. Helmuth and L. Spector. General program synthesis
benchmark suite. In GECCO ’15: Proceedings of the 2015
Conference on Genetic and Evolutionary Computation, July
2015.

[7] T. Helmuth, L. Spector, and J. Matheson. Solving
uncompromising problems with lexicase selection. IEEE
Transactions on Evolutionary Computation, 19(5):630–643,
Oct. 2015.

[8] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[9] N. F. McPhee, D. Donatucci, and T. Helmuth. Using graph
databases to explore the dynamics of genetic programming
runs. In R. Riolo, B. Worzel, M. Kotanchek, and A. Kordon,
editors, Genetic Programming Theory and Practice XIII,
Genetic and Evolutionary Computation. Springer.

[10] L. Spector, J. Klein, and M. Keijzer. The Push3 execution
stack and the evolution of control. In GECCO 2005:
Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 1689–1696, Washington
DC, USA, 2005. ACM Press.

[11] L. Spector and A. Robinson. Genetic programming and
autoconstructive evolution with the push programming
language. Genetic Programming and Evolvable Machines,
3(1):7–40, Mar. 2002.

[12] L. Vaseux, F. E. Otero, T. Castle, and C. G. Johnson.
Event-based graphical monitoring in the EpochX genetic
programming framework. In Proceedings of the 15th annual
conference companion on Genetic and evolutionary
computation, pages 1309–1316. ACM, 2013.

1426




