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ABSTRACT
The results when optimising most multi- and many-objective
problems are difficult to visualise, often requiring sophisti-
cated approaches for compressing information into planar
or 3D representations, which can be difficult to decipher.
Given this, distance-based test problems are attractive: they
can be constructed such that the designs naturally lie on the
plane, and the Pareto set elements easy to identify. As such,
distance-based problems have gained in popularity as a way
to visualise the distribution of designs maintained by differ-
ent optimisers. Some taxing problem aspects (many-to-one
mappings and multi-modality) have been embedded into pla-
nar distance-based test problems, although the full range of
problem characteristics which exist in other test problem
frameworks (deceptive fronts, degeneracy, etc.) have not.
Here we present an augmentation to the distance-based test
problem formulation which induces dominance resistance re-
gions, which are otherwise missing from these test problems.
We illustrate the performance of two popular optimisers on
test problems generated from this framework, and highlight
particular problems with evolutionary search that can man-
ifest due to the problem characteristics.

Keywords
Multi-objective test problems; dominance resistance points;
niching; evolutionary optimisation.

1. INTRODUCTION
Visualising a Pareto front approximation delivered by

an evolutionary algorithm (EA), along with the associated
Pareto set approximation (and the relationship between
them) is often difficult. This is because often one or both sets
inhabit a space whose dimension is greater than three (the
space which humans naturally visualise and interact with).
A number of approaches to enable the visualisation of de-
signs in these domains have been utilised over the years.
This often includes ‘traditional’ visualisations like parallel
coordinate plots (an approach which dates back to at least
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the late 1800s, see plate 151 of [5]) and heatmaps [18, 16].
More recently specialised approaches specifically developed
for multi-objective data have started to be used. For in-
stance scatterplot approaches which compress information
but attempt to preserve domination relationships explicitly
[12, 2], or via a distance [20].

Although popular, it is quite difficult to ascertain from vi-
sualisations such as parallel coordinate plots and heatmaps
the distribution of solutions. This is exacerbated as the
number of dimensions (in either space) increases, and also
as the number of solutions considered increases. Alterna-
tively, specialised scatterplot visualisation approaches tend
to lose information due to their data compression from a
higher number of dimensions into the two or three dimen-
sion used to visualise the data. Distance-based multi- and
many-objective problems, first popularised in [10, 11] for
visualisation, sidestep these issues. They formulate prob-
lems which can have arbitrarily many objectives, but whose
design space natively lives in two-dimensions — where the
Pareto set is easy to identify visually. These problems have
been used in a number of empirical studies (e.g. [17, 8, 14])
in order to visualise the distribution of designs maintained
by multi- and many-objective optimisers during their search
— providing qualitative information. In the distance-based
formulation (also sometimes referred to as a Pareto-box for-
mulation), a putative solution is a point in the plane, and its
performance on each objective is calculated as its distance to
a point in that space. (In later extensions, the minimum dis-
tance to an element of a set is also used.) A problem instance
is therefore parameterised by the set of points, {vi}, used in
the objective calculations for proposed solutions, along with
a distance metric, dist(·, ·) (usually Euclidean).

The original framework has been extended in the last
few years to facilitate such properties as many-to-one map-
ping, multi-modality and arbitrarily many design variables
— whilst still retaining the key property of being easy to
visualise in the plane [6, 7, 9, 13, 15]. Recent work has
also investigated the use of non-Euclidean distance metrics
within this framework, and the identification of the Pareto
optimal set in these situations [21].

2. PARETO OPTIMALITY
Without loss of generality, when optimising a multi-

objective problem we seek to simultaneously minimise D ob-
jectives: fd(x), d = 1, . . . , D where each objective depends
upon a vector x = (x1, . . . , xK) of K parameters or decision
variables. These parameters may also be subject to equality
and inequality constraints, which together define X ∈ RK ,
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the feasible search space. Related to this is Y, the objec-
tive space image of X (sometimes referred to as the feasible
objective space). When faced with only a single objective
an optimal solution x∗ is one which minimises the objec-
tive, subject to x∗ ∈ X . However, when there is more than
one objective to be minimised, solutions may exist for which
performance on one objective cannot be improved without
reducing performance on at least one other. Such solutions
are said to be Pareto optimal. The set of all Pareto optimal
solutions is said to form the Pareto set, P, whose image in
objective space is known as the Pareto front, F .

A decision vector x is said to dominate another x′ iff

fd(x) ≤ fd(x′) ∀d = 1, . . . , D and f(x) 6= f(x′) (1)

This is often denoted as x ≺ x′. Multi- and many-objective
evolutionary algorithms (‘many’ objectives is generally re-
ferred to in the literature as four or more) typically maintain
a set of mutually non-dominating solutions A. This set is
usually referred to as an archive, and forms their estimated
Pareto set. This may be active (providing input into the op-
timisation process) or a passive record of the best solutions
ever encountered during the optimisation [19]. It is useful
when examining the properties of an optimiser to look at the
distribution of designs in the image of A, as one character-
istic often preferred in an optimiser is for the designs to be
evenly distributed on the approximation to F — providing
the decision maker a ‘good’ range of designs to choose from,
given |A|.

During the development of new optimisers, it is often use-
ful to apply them to test problems whose properties are sim-
ilar in some way to the real-world problem the optimiser is
being developed for. Test problems can also help us examine
how an algorithm tends to behave, and visualising this can
be very useful. This has led to the development of distance-
based test problems to examine the population dynamics
and diversity preservation properties of optimisers.

3. DISTANCE-BASED PROBLEMS
In the standard formulation, the dth distance-based ob-

jective (criterion) is a function of a putative design x, a set
of w vertices Vd = {vi}wi=1 defined for that objective, and a
distance metric dist(), such that

fd(x) = min
v∈Vd

(dist(x,v)). (2)

In [10] |Vd| = 1, however later extensions to the distance-
based framework (e.g. [8]) incorporate a set of comparison
vertices per objective as a way to induce disjoint Pareto sets
(a multi-modal landscape).

Fig. 1 provides a simple illustration of a D = 2 distance-
based test problem. In the left panel X is shown: K = 2,
the inequality constraints bound the feasible search space to
the unit square, V1 = {(0.45, 0.5)} and V2 = {(0.55, 0.5)}.
Using the Euclidean distance, P is the line segment joining
(0.45, 0.5) and (0.55, 0.5). In the right panel the correspond-
ing Y is shown (via evaluating 10,000 samples uniformly
drawn from X ).

It can be seen in Fig. 1 that the Y induced by the standard
formulation closes in on the extremes, such that a solution
which minimises one objective, is always a member of the
Pareto set. This is the case irrespective of D. Furthermore,
due to recommended use of Vd in the literature — to form
separate regions of Pareto optimal solutions in X , which are
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Figure 1: Test problem illustration. Left: Objec-
tives derived from distance to points, visualisation
of X with P highlighted. Right: corresponding Y.
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Figure 2: Test problem illustration. Left: Objec-
tives derived from distance to line segments, visual-
isation of X with P highlighted. Right: correspond-
ing Y. P is the same as in Fig. 1, but Y no longer
contracts down at the edges of the Pareto front.

not too close [6] — this is also the case for the commonly
used disjoint Pareto set mappings.

In many real world problems designs which minimise one
quality criterion (or are close to the minimum on a crite-
rion), are often not Pareto optimal, and lead in turn to the
dominance resistance points problem for multi-objective op-
timisers [4]. This is where optimisers can be drawn to search
around points (designs) that are very far from F (and likely
also P) due to their good performance on one (or a handful
of criteria), albeit very poor performance on others. This
issue does not arise in the current construction of visual
distance-based problems, as any solution that minimises one
criteria (or is close to it), is in (or close to) F and P. It
is the provision of dominance resistance solutions in visual
distance-based multi-objective test problems which we now
consider.

4. DOMINANCE RESISTANCE
One mechanism to enable dominance resistance points, is

to replace distances from vertices in (2), to distances from
lines/regions. An illustration of the effect of this is shown in
Fig. 2. This has the same P as Fig. 1, however the vertices
for the two criteria at (0.45, 0.5) and (0.55, 0.5) have been
replaced by line segments (for criterion 1, from (0.0, 0.5) to
(0.45, 0.5), and for criterion 2 from (0.55, 0.5) to (1.0, 0.5)).
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Figure 3: Test problems using distance to regions.
Minima regions for each criterion in colour and P in
grey.
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Figure 4: Example test problems. Vertices high-
lighted with filled circles (colour denoting criterion
vertex minimises). Dominance resistance areas in
black and P in grey. Left column: Three objectives.
Right column: Four objectives. Top row: Domi-
nance resistance areas contiguous with P. Bottom
row: Dominance resistance areas and P in separate
regions.

The effect on Y can be seen in the right panel of Fig. 2,
where the mapping no longer pinches at the extremes of F .
It is worth noting here that a coloured region in Fig. 2
contains designs which are dominated by other designs in
the same region, unlike the grey region denoting P, which
is induced by the coloured regions, but which contains only
mutually non-dominating solutions.

Although this modification has the effect we desire in the
D = 2 situation, it becomes geometrically limited as D in-
creases. Fig. 3 illustrates examples using this approach for
D = 3 and D = 4 problems. The areas with minimum cri-
teria values are denoted ad and coloured according to min-
imised criteria. Any solution in ad has the minimum value
of 0.0 for the dth criterion, and the minimum distance to
any of the lines making up its sides is used to compute the
quality on the dth criterion of a solution in X which lies
outside this area. The effect of this is to have dominance
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Figure 5: D = 8 problem. Vertices highlighted with
filled circles (colour denoting criterion vertex min-
imises).

Figure 6: Cost landscape in X induced by each ob-
jective from the problem shown in Fig. 5. (Darker
regions denote lower cost.)

resistant solutions which have the minimum (or near the
minima) on one criteria. However it does not provide dom-
inance resistant points with multiple good quality values.
This property could be provided via designing parts of these
resistance areas to be close to each in regions away from P,
but such construction has to be careful (and can result in
a large proportion of X being a dominant resistant region).
A more elegant approach can instead be found by revisit-
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Table 1: Distance-based test problems with domi-
nance resistance areas used in empirical section.

# Problem parameters

1

V1 = {(0.2125, 0.75), (0.7125, 0.25), (0.3625, 0.75),
(0.8625, 0.25)}

V2 = {(0.2875, 0.75), (0.7875, 0.25), (0.25, 0.88995),
(0.75, 0.38995)}

V3 = {(0.250.81495), (0.75, 0.31495), (0.125, 0.75),
(0.625, 0.25)}

2

V1 = {(0.2125, 0.75), (0.7125, 0.25), (0.2125, 0.25),
(0.4625, 0.5)}

V2 = {(0.2875, 0.75), (0.7875, 0.25), (0.2875, 0.25),
(0.7125, 0.75)}

V3 = {(0.25, 0.81495), (0.75, 0.31495), (0.5375, 0.5),
(0.7875, 0.75)}

3

V1 = {(0.2, 0.75), (0.7, 0.25), (0.35, 0.8), (0.85, 0.3)}
V2 = {(0.25, 0.8), (0.75, 0.3), (0.3, 0.65), (0.8, 0.15)}
V3 = {(0.3, 0.75), (0.8, 0.25), (0.15, 0.7), (0.65, 0.2)}
V4 = {(0.25, 0.7), (0.75, 0.2), (0.2, 0.85), (0.7, 0.35)}

4

V1 = {(0.2, 0.75), (0.7, 0.25), (0.075, 0.125),
(0.575, 0.625), (0.825, 0.875)}

V2 = {(0.25, 0.8), (0.75, 0.3), (0.375, 0.425),
(0.625, 0.675), (0.875, 0.925)}

V3 = {(0.3, 0.75), (0.8, 0.25), (0.175, 0.125),
(0.425, 0.375), (0.675, 0.625)}

V4 = {(0.25, 0.7), (0.75, 0.2), (0.125, 0.075),
(0.375, 0.325), (0.875, 0.825)}

5

V1 = {(0.2, 0.75), (0.45, 0.75), (0.7, 0.75), (0.2, 0.5),
(0.45, 0.5), (0.7, 0.5), (0.2, 0.25), (0.45, 0.25)}
V2 = {(0.2174, 0.78535), (0.4674, 0.78535),

(0.7174, 0.78535), (0.2174, 0.53535), (0.4674, 0.53535),
(0.7174, 0.53535), (0.2174, 0.28535)}

V3 = {(0.25, 0.8), (0.5, 0.8), (0.75, 0.8), (0.25, 0.55),
(0.5, 0.55), (0.75, 0.55)}

V4 = {(0.28535, 0.78535), (0.53535, 0.78535),
(0.78535, 0.78535), (0.28535, 0.53535),

(0.53535, 0.53535)}
V5 = {(0.3, 0.75), (0.55, 0.75), (0.8, 0.75), (0.3, 0.5)}

V6 = {(0.28535, 0.7174), (0.53535, 0.7174),
(0.78535, 0.7174)}

V7 = {(0.25, 0.7), (0.5, 0.7)}
V8 = {(0.2174, 0.7174)}

ing the methodology for generating multiple Pareto optimal
regions in X .

Rather than using vertices simply to bound the Pareto
optimal region in X , D−m vertices (for D−m objectives)
may be used, where 0 < m < D. These vertices bound dom-
inance resistance areas, R, which act as a source of domi-
nance resistance points. Solutions inside R have different
mappings to Y from one another (unlike the approach illus-
trated in Fig. 3), and are non-dominated by other members
of the same bounded area. However, assuming correct con-
struction, they will always be dominated by a solution in P.
Illustrations of some such problems are provided in Fig. 4,
for D = 3 and D = 4, with a disconnected P. The pan-
els show situations where R is contiguous (in X ) to P, and
where they are disconnected from one another. Care needs
to be taken when constructing the dominance resistance ar-
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104

evals

105

evals

Figure 7: NSGA-II, example results on problem 1.
Search population (left) and passive non-dominated
archive member locations (right) in X after 1,000,
10,000 and 100,000 function evaluations (top to bot-
tom). Horizontal bars at the bottom indicate the
proportion of P solutions in the population of the
median run (lower bar), and on the reduced problem
that omits the dominance resistance vertices (upper
bar). Stars either side of the righthand side bar ends
indicate inter-quartile ranges over 30 runs.

eas – the easiest way to ensure that a dominance resistance
area is not accidentally constructed such that it hold Pareto
optimal solutions, is to have the same relative positioning
of vertices as in the Pareto optimal regions (bar the one or
more omitted vertices).

Fig. 5 shows an eight-objective problem. Here there are
seven dominance resistance areas, each involving fewer and
fewer objectives. The cost landscape induced by each |Vd| is
shown in the panels in Fig. 6. The locations of the vertices
in the test problems shown in Figs. 4-5 are detailed in Table
1, and are used in the following empirical section.

5. EMPIRICAL EXAMPLES
We now provide examples of the performance of two pop-

ular MOEAs, which are widely used by the community, on
distance-based problems constructed using the methodol-
ogy described above. These are the Non-dominated Sort-
ing Genetic Algorithm-II (NSGA-II) [1] and the Indicator
Based Evolutionary Algorithm — with the ε+ indicator —
(IBEAε+) [22]. We use three, four and eight objective vari-
ants in K = 2. For the D = 3 problem the search population
size is set at 150, for the D = 4 problem 250 and for the
D = 8 problem 500. Other parameters are as recommended
in the original papers. A passive non-dominated archive was
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Figure 8: NSGA-II, example results on problem 2.
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Figure 9: NSGA-II, example results on problem 3.

preserved for each algorithm, as recommended in [19]. This
archive was unconstrained, thus accurately representing the
non-dominated solutions found by an algorithm during dur-
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Figure 10: NSGA-II, example results on problem 4.
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Figure 11: NSGA-II, example results on problem 5.

ing its search [3]. As well the membership of the search pop-
ulation, membership of this passive archive is also plotted in
X . This is important, as visualising the search population
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Figure 12: IBEAε+, example results on problem 1.
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Figure 13: IBEAε+, example results on problem 2.

at any particular time step simply provides a snapshot of
the search process, whereas an unconstrained passive archive
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Figure 14: IBEAε+, example results on problem 3.
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Figure 15: IBEAε+, example results on problem 4.

shows all the best solutions an algorithm has discovered up
until that point — giving insight into the search history.1

1Matlab implementations and scripts to recreate the re-
sults may be found at https://github.com/fieldsend.
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Figure 16: IBEAε+, example results on problem 5.

Results are provided in a consistent way for all problems,
and algorithms. Each sub-panel in the results plots (Figs.
7–16) shows the location of an indicative search population
(left panels) and a corresponding passive unconstrained non-
dominated archive (right panels). Solutions are plotted as
red dots in X if they reside in P, otherwise they are plotted
as black dots. Results are shown for the algorithms after
103, 104 and 105 function evaluations.2 At the bottom of
each panel are two horizontal bars starting at the y-axis.
The lower (green) bar shows the median proportion of solu-
tions in the corresponding population (over 30 runs) which
reside in P at the plotted number of function evaluations. A
bar spanning 70% of the panel width would therefore denote
70% of the solutions in the corresponding population of the
median run (search population or passive archive, depending
on panel) lie in P. The upper (blue) bar shows the same in-
formation for 30 runs on identical problems which omit the
vertices designed to cause dominance resistance points (i.e,
for these reduced problems 1-4 |Vd| = 2, and for problem 5
|Vd|=1). This enables us to quantify the effect of the domi-
nance resistance elements of the problems on an algorithm’s
ability to find (and retain) solutions in P. The stars plotted
straddling the righthand side of the bar indicate the inter
quartile ranges from the 30 runs.

Figs. 7-11 show the results for a typical run of NSGA-II on
the five problems. By examining the location of the search
population (left panels) and a passive unconstrained non-
dominated archive (right panels) it is interesting to see that
the dominance resistant areas in particular cause NSGA-II
problems. The search population hones in on the Pareto

2Or the closest number after this value, that is divisible by
the search population size.

regions by 104 evaluations on problems 2 and 4, but by 105

evaluations the search population is focused almost exclu-
sively on the suboptimal dominance resistance points. Even
for problems 1 and 3 the search population has a tendency
to been drawn to the contiguous R and has shrunk down
to one of the two main regions. Compared to the prob-
lems without dominance resistance regions, we can see the
proportion of P members in both populations tends to be
much worse. We hypothesise that this behaviour is due to
the niching approach used by NSGA-II. When the popula-
tion is full of solutions with the best rank in this algorithm,
the distance to the next nearest member in objective space
is used for pruning. This removes the most tightly packed
solutions in Y, which tend to be solutions in P rather than
R as they tend to be closer than solutions in R. As more
solutions are found in R (for which a corresponding domi-
nating solution in P has not been found), the solutions in
P are progressively ‘crowded out’ when using this niching
approach.

Figs. 12-16 show the results for a typical run of IBEAε+

on the five problems. IBEAε+ copes with the dominance re-
sistance points better (on these particular problems). Here
the R members are disadvantaged with respect to P mem-
bers, as even if a corresponding dominating element of P
has not been found, the ε+ indicator penalises R members
more as (at least) one of the objectives will always be much
poorer than P elements in these problems (needing a larger ε
to offset). By 105 evaluations only the edges ofR in problem
3 seem to be still be drawing the algorithm away from P. In
general the search population tends not to be overly swayed
toward the dominance resistance areas. However, note that
many elements from R do appear in the passive archive,
meaning they have not been dominated by the found ele-
ments in P — the search process of IBEAε+ tends not to
be pulled toward them once solutions found in P grow. On
the other hand, the algorithm does seem to have a problem
maintaining distinct disconnected regions of P, often ‘los-
ing’ one of the disconnected regions in problems 1-4 from
the search population. This results in one optimal region in
X being well-filled out in the passive archive, but the other
often sparsely populated.

6. SUMMARY
We show how dominance resistance may be incorporated

into the distance-based problem framework for generating
test problems whose decision vectors are two-dimensional,
making the search space easy to visualise. Previously sets
of vertices per objective in these problems have been used
to generate spatially distinct regions of design space which
map to the same optimal locations in objective space (or in
the case of [6], to represent a map-based distance problem).
We have shown that sets of vertices may also be utilised to
generate a source of dominance resistance points. We have
illustrated how the search population of two popular evo-
lutionary optimisers are affected by this modification, and
on the best solutions they encounter, via the visualisation
of both the search population and an unconstrained pas-
sive archive. The niching method in NSGA-II seems espe-
cially fragile to dominance resistance points generated by
our test problems. It would be interesting to analyse the
effects on different niching approaches further. Depending
on the propensity of dominance resistant points in the real
world problem at hand, this effect would appear to be quite
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deleterious to the search process. IBEAε+ appears less af-
fected by the form of dominance resistance that the five test
problems posed, although it tended to have a problem re-
taining spatially separated locations of the Pareto set.

We illustrated the problems in two-dimensional design
space, however the framework described in [15] can be used
to map these problems to arbitrarily large design spaces.
We also note that there are conceptual similarities between
dominance resistance areas, and the properties required to
generate deceptive fronts in a search landscape. Therefore
a similar route may also be use to embedding this property
into easily visualisable distance-based test problems.
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