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ABSTRACT
Evolutionary algorithms (EAs) are a kind of stochastic opti-
mization methods, which have been testified to be powerful
in solving many real-world hard problems in past decades.
But till now, we are still short of e↵ective methods to rep-
resent and investigate their collective behaviors in various
environments, which are very useful for researchers and en-
gineers in Evolutionary Computation to understand the al-
gorithms better. This paper is a preliminary e↵ort to tackle
above issue. We attempt to analyze the generation-wise col-
lective behavior of EAs via an approach called feature learn-
ing. An unsupervised feature learning framework based on
Slow Feature Analysis (SFA) is presented to extract discrim-
inative features from the generation-wise collective behavior
data of several EAs on various fitness landscapes, with the
purpose of finding out whether there exist di↵erences be-
tween the searching behavior of di↵erent EAs running on
the same fitness landscape; and whether there are di↵er-
ences between the behavior of one algorithm running on dif-
ferent fitness landscapes. Besides, the relationship between
the fitness landscape and the searching behavior of EA is
also studied. In the experiments, several typical EAs and
classical benchmark functions with typical landscapes are
selected as the study subjects. The collective behaviors of
various EAs are visualized and compared in the extracted
feature space.
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1. INTRODUCTION
An evolutionary algorithm (EA) is a stochastic optimiza-

tion technique. EA is initialized with a set of possible so-
lutions, and then gradually updated by multiple iterations
to find regions containing optimal solutions. The previous
research mainly concentrates on the outcome of EAs, rela-
tively little attention is paid on the searching behavior of
EAs. As a result, although EAs have been put to use with
success in many fields, it is often hard for users to know how
the solutions were discovered.

Over the years, a number of visualization techniques have
been proposed to analysis the evolutionary process of EA.
In [8], a visualization tool called GAVEL examines how
crossover and mutation operations a↵ect the final result in
a generational GA. Evolutionary Visual Exploration (EVE)
system, presented in [3], is dedicated to analyzing the be-
havior of EA by visualizing the multidimensional datasets,
which are provided by EA in di↵erent viewpoints. Addi-
tionally, a generic tool named ELICIT is created in [5], it
gives an access to the visualization of both phenotypes and
genotypes. All of these tools tend to focus on the visualiza-
tion of population data and the evolution process of fitness
values [5]. Nevertheless, the convergence of EA usually go
through iterations, and a set of high dimensional population
data are produced in each iteration. In the whole process,
a large amount of data is generated. Direct observation and
analysis of these data is di�cult.

In [11], an empirical method is presented to investigate
the collective behavior of population-based search algorithm,
the key contribution of this work was that some measure-
ments were developed to identify emergent properties of pop-
ulation, i.e. exploitation and exploration, with the purpose
to characterize the algorithms. Based on this work, In [12],
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process.

the authors developed a set of features to characterize the
collective behavior, and then defined an indicator of the ex-
ploitation behavior of an EA.

This paper tries to represent and analyze the collective
behavior of EAs via an approach called feature learning.
Di↵erent from the works presented in [11] and [12], in which
the features were defined by the authors [11]. The purpose
of this paper is to develop method to extract discrimina-
tive features of the collective behavior of EAs via automatic
learning, other than human defining. An unsupervised fea-
ture learning framework based on SFA is presented to meet
this purpose. Four classical EAs [4]: classical evolutionary
programming (CEP) [15], di↵erential evolution (DE) [10],
evolution strategy (ES) [2] and genetic algorithm (GA) [7],
are selected to generate collective behavior data for study.
Meanwhile, six functions are used as the test bed of various
fitness landscapes [9]: Ackley’s function, the Elliptic func-
tion, Rastrigin’s function, Rosenbrock’s function, Schwefel’s
problem 1.2 and the Sphere function. In the experiments,
data produced by di↵erent algorithms from the same current
population of solutions on the same fitness landscape, and
data produced by the same algorithm from the same cur-
rent population of solutions on di↵erent fitness landscape,
are analyzed with a method based-on Slow Feature Analysis
(SFA). Obvious aggregation and stable similarity relation-
ship of collective behavior data of four EAs are observed
in the feature space constructed with the slow features ex-
tracted by the presented method.

The rest of the paper is organized as follows: Section II
introduces the framework of feature learning based on slow
feature analysis. Section III outlines the experiments setup,
and presents the experiment results and analysis in detail.
Finally, conclusions are given in section VI.

2. COLLECTIVE BEHAVIOR FEATURE
LEARNING BASED ON SFA

An Evolutionary Algorithm can be treated as a input-
output system working in the solution space of a specific
problem. Input of the system is a set of solutions with their
fitness, and the output is a set of new solutions. We can
study the discrepancies in the search behavior of di↵erent
EAs by analyzing the one generation o↵spring, which were
generated from the same initial population according to dif-
ferent evolutionary rules. At the same time, the search be-
havior of each EA on di↵erent landscapes can also be stud-
ied from such one generation o↵spring. As an unsupervised
feature learning algorithm, slow feature analysis (SFA) can
learn slowly varying signals from multiple dimensional input
data. The learned slow features to some extent reveal the
essential features of the input-output system, here the EA.

The procedure of EA feature learning is illustrated in Fig-
ure 1. Its key components are explained below.

2.1 Behavior Data Collection
The features of EAs’ behavior are to be learned from the

o↵spring population generated by EAs from the current pop-
ulation. Firstly, select a small area and randomly initialize a
population within the area as the parent population. Then
produce o↵spring with EAs on di↵erent fitness landscapes
defined by the six test functions. Note that each algorithm
with one landscape only performs one single iteration. For
each algorithm with each landscape, the operation is re-
peated 500 times and 500 groups of o↵spring are produced.
Given the stochastic nature of EA operation, the 500 groups
of o↵spring should not be identical, but should contain same
information connected to the inner mechanism of the EA.

2.2 Self-organizing Map (SOM) for Represen-
tation Normalization

It is the distribution of the population in the solution
space, not the permutation of individuals in the popula-
tion, that is of the most concern in behavior analysis of EAs.
Given that, when represented by chaining the individuals se-
quentially, the representation of the population may change
when the individuals change their positions in the chain,
while the distribution of the population will not change ac-
tually. Therefore, the representation of the population need
to be normalized to be invariant under the position change
of individuals in the representation.

In this paper, Self-Organizing Map (SOM) [6] is adopted
to implement the representation normalization of EA’s be-
havior data. After being well trained, the SOM can map the
individuals in original solution space onto a 2 dimensional
grid representation, in which, the hitting times of each node
is recorded and used to represent the value of the node, and
the neighborhood relationship between nodes are kept from
high dimensional solution space to the low dimensional SOM
representation space.

In this study, a 2-D SOM grid is trained in advance from
a large number of data sampled evenly randomly from the
solution space, the size of the SOM grid is set to 100*100,
and the dimension of the sample vector is consistent with
the test problems adopted, that is, 30. To guarantee train-
ing quality of SOM, t-SNE [13] is adopted as a pre-training
technique to get the well-ordered initialization of SOM.
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Figure 2: Sample distribution of 4 EAs on the same

fitness landscape of 6 benchmark functions in the

feature space constructed by slow features.

2.3 Principal Component Analysis (PCA) for
Discriminative Feature Extraction

Given the 2-D representation of one generation o↵spring of
EAs, and 500 sampled o↵spring populations for each of four
EAs on each of six test fitness landscapes, PCA is adopted to
extract linear discriminative features from sample sequences
of all experiment configurations. The extracted features con-
tain both the stable information related to the inner mech-
anism of the EA, and random information caused by the
random nature of the EA. To obtain the former information,
Slow feature analysis is applied to the new sample sequences
represented in PCA features to extract slow features corre-
sponding to the stable part in the sample sequences.

2.4 Slow Feature Analysis (SFA) for Stable Fea-
ture Extraction

SFA was originally designed for extracting slowly varying
or invariant components from the input time series. The
slow features learned by SFA are believed to be able to rep-
resent the stable part of the subject under investigation, and
be useful for classification [14]. When being applied to the
analysis of EAs, SFA plays a role to filter out the stochastic
part of EAs, and the stable part of EAs are retained, which,
in a sense, can be regarded as the feature of EAs.

The fundamental of SFA can be described like this [1]:
Given an input signal x(t) = [x1(t), x2(t), . . . , xI

(t)]T , find
the input-output function g(t) = [g1(t), g2(t), . . . , gJ(t)]

T ,
so that the output signal y

j

(t) = g

j

(x(t)), j 2 {1, 2, . . . , J}.
g

j

(x) can be expressed as a weighted sum over a set of K
nonlinear functions h

k

(x), namely g

j

(x) =
P

K

k=1 wjk

h

k

(x).
Thus, g

j

(x(t)) = w

T

j

h(x(t)), j 2 {1, 2, . . . , J}, the nonlinear
expansion turn the problem into a linear one. Denote z(t) =
h(x(t)), then

Minimize �(y
j

) = hẏ2
j

i = w

T

j

hżżT iw
j

(1)

Under the constraints:

hy
j

i = w

T

j

hzi = 0 (2)

Figure 3: Six benchmark functions in 2-D space

[5, 10]2.

hy2
j

i = w

T

j

hzzT iw
j

= 1 (3)

8j0 < j : hy
j

0
y

j

i = w

T

j

hzzT iw
j

= 0 (4)

Constraints (2) and (3) aim at avoiding the trivial solution
g

j

(x) = 0, and constraint (4) guarantees that di↵erent signal
components to be uncorrelated.

The constraint (3) is integrated in the objective function
(1), then we obtain:

Minimize �(y
j

) =
w

T

j

hżżT iw
j

w

T

j

hzzT iw
j

=
w

T

j

Aw

j

w

T

j

Bw

j

(5)

The weight vector w

j

that minimize this equation corre-
sponds to the eigenvector of A [16].

In this paper, the input sequence is constituted by the
samples represented in PCA features. The samples from
same EA are put together in the sequence. Reconstruction
of the sequence and reformulation of the objective function
are as follows:

Minimize �(y
j

) = a ·
CX

m=1

PmX

k,l=1

(g
j

(x(m)
k

)� g

j

(x(m)
l

))2 (6)

Where C means the number of experimental configura-
tions (EA, fitness landscape), and there are P

m

samples

x

(m)
1 , x

(m)
2 , · · · , x(m)

Pm
for a certain experimental configura-

tion. Accordingly, the constraints are reformulated to:

1
P

CX

m=1

PmX

k=1

g

j

(x(m)
k

) = 0 (7)

1
P

CX

m=1

PmX

k=1

g

j

(x(m)
k

)
2
= 1 (8)

8i < j,

1
P

CX

m=1

PmX

k=1

g

i

(x(m)
k

)g
j

(x(m)
k

) = 0 (9)
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Figure 4: Sample distribution of EA on di↵erent

fitness landscapes.

Where P =
P

C

m=1 Pm

is the total number of samples.

2.4.1 Nonlinear Expansion
Assume x = [x1, x2, · · · , xn

]T is the sample sequence rep-
resented in PCA features, then the expanded signal is:

z = h(x) = [x1, x2, · · · , xn

, x1x1, x1x2, · · · , xn

x

n

]T (10)

And the dimension of z is (n+ n(n+ 1)/2).

2.4.2 Sphering
The expanded signal needs to be sphered to satisfy the

constraints (7), (8), (9). Let E = [e1, e2, · · · , ek] be the
matrix whose columns are the unit-norm eigenvectors of
the covariance matrix C

z

= E{zzT }, meanwhile, let D =
diag(d1, d2, · · · , dk) be the diagonal matrix of the eigenval-

ues of C
z

, thus a transform matrix V = D

� 1
2
E

T is calcu-
lated. Finally, compute the sphered matrix:

s = [s1, s2, · · · , sk]T = V z = D

� 1
2
E

T

z (11)

2.4.3 Slow Feature Extraction
The constraint (8) can also be integrated in the objective

function (6) as the same as that in equation (5), then the
matrix A referred to in equation (5) can be calculated by:

A = a ·
CX

m=1

PmX

k,l=1

(x(m)
k

� x

(m)
l

)(x(m)
k

� x

(m)
l

)
T

(12)

The input-output functions g(x) can be derived and sorted
according to corresponding eigenvalues of A, then the first
two or three slow features can be driven from the corre-
sponding input-output functions.

3. EXPERIMENT RESULTS AND ANALY-
SIS

Four classical EAs (GA, ES, CEP, DE) are chosen as the
exemplar algorithms to investigate the ability and legality
of the method presented. Detailed information of these al-
gorithms is provided in the Appendix.

Six classical benchmark functions [9] are adopted to pro-
vide various fitness landscapes for investigation. These six
functions represent di↵erent types of problem with di↵erent
fitness landscapes. The dimensionality of all the functions
is set to 30. And the global optimum is the solution that

Figure 5: Fitness landscape of Ackley’s Function on

di↵erent areas in 2-D.

has the minimum function value. Detailed information of
the benchmark functions is provided in the Appendix.

Four experiments are designed to analyze the collective
behavior of EAs : A) The behavior of di↵erent EAs on the
same fitness landscape; B) The behavior of same EA on
fitness landscape of di↵erent benchmark functions; C) The
behavior of EA on the di↵erent fitness landscapes of same
benchmark function; D) The behavior of di↵erent EAs on
di↵erent benchmark functions. In this section, the experi-
ment results are given in detail.

3.1 The behavior of different EAs on the same
fitness landscape

In this experiment, the initial population is randomly sam-
pled in area [5, 10]30. The one-generation o↵spring generated
by four algorithms with the same initial population on the
same benchmark function are collected as the sample data
of collective behavior of EAs, with the purpose to find out
whether there exist di↵erences between the collective behav-
iors of di↵erent evolutionary algorithms when executed on
the same condition. There are 500(o↵spring populations) ⇤
4(EAs) = 2000 samples in the input sequence, they are
mapped in the 2-D feature space extracted via the process
presented in Section 2, as shown in Figure 2.

In Figure 2, it can be observed that the sample distribu-
tion of four algorithms exhibit very clear aggregative and
discriminative nature in the feature space constructed by
slow features. Beyond that, for all of the fitness landscapes
of six benchmark functions, the one-generation behavior of
four EAs exhibits a sort of stable similarity relationship,
that is the behavior of CEP, DE and GA are more similar
compared to that of ES.

3.2 The behavior of EA on different fitness land-
scapes

In this experiment, the initial population is also randomly
sampled in [5, 10]30, and the input is constituted by the o↵-
spring created by one algorithm under di↵erent benchmark
functions. That is to say, there are 500(o↵spring populations)⇤
6(benchmark functions) = 3000 samples in the input se-
quence for SFA. Di↵erent benchmark functions correspond-
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Figure 6: Sample distribution of EAs on di↵erent landscapes of di↵erent benchmark functions in the obtained

feature space. The landscapes corresponding to di↵erent areas in the solution space of di↵erent benchmark

functions, the bounds are: a. [0, 5]; b. [-2.5, 2.5]; c. [-5, 0]; d. [15, 20]; e. [45, 50]; f. [-20, -15].
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ing to di↵erent landscapes, so the behavior di↵erences of one
algorithm on di↵erent landscapes can be learned. Figure 3
illustrates the fitness landscape of 6 benchmark functions
on the 2-D solution area [5, 10]2. The sample distribution of
four EAs are displayed in Figure 4.

In Figure 4, it can be observed that CEP and ES ex-
hibit discrimination on the landscape of Elliptic function and
Schwefel’s Problem 1.2 compared with the other four land-
scapes. While no discrimination is observed for DE and GA
on all fitness landscapes under test. It may imply that the
behavior of DE and GA are not sensitive to the six fitness
landscapes, while the behavior of CEP and ES are some-
how sensitive to the fitness landscapes. In order to further
investigate the relationship between the search behavior of
EA and the fitness landscape, the third experiment is con-
ducted.

3.3 The behavior of EA on different fitness land-
scapes of one benchmark function

In experiment A) and B), the range of initialization is
[5, 10]. In order to find the relationship of search behavior
and the fitness landscapes, the initial landscape of the par-
ent group need to be changed in this experiment. To focus
the investigation on the fitness landscape other than the so-
lution distribution, instate to change the sampling area of
solution space, the benchmark function is shifted in the so-
lution space accordingly. For example, instate of changing
sampling area from [5, 10] to [0, 5], an o↵set -5 is added to all
coordinates in benchmark functions. In this way, several dif-
ferent landscapes are obtained. Take the Ackley’s Function
as an example, the di↵erent landscapes of it are illustrated
in Figure 5.

In this experiment, the same configuration as Experiment
A) is adopted but is repeated six times, with each time dif-
ferent area of solution space is investigated. All the results
are showed in Figure 6.

From Figure 6, it can be observed again that, on di↵erent
fitness landscapes, in the feature space constructed by slow
features extracted by the method presented in this paper,
the sample distribution of four algorithms exhibit clear ag-
gregative and discriminative nature. Additionally, for all of
the fitness landscapes, the one-generation behavior of four
EAs exhibits a sort of stable similarity relationship.

3.4 The behavior of different EAs under dif-
ferent benchmark functions

In previous experiments, benchmark functions or EA are
controlled respectively to investigate the search behavior of
di↵erent EAs on same landscape or same EA on di↵erent
landscapes. In this section, the o↵spring of four EAs on
all landscapes are put together for analysis. That is to say,
there are 500(o↵spring populations)⇤4(EAs)⇤6(benchmark
functions)=12000 samples in the input sequence for SFA.
The experiment configuration is repeated six times with six
di↵erent areas of solution space are investigated respectively.
The sample distribution in the feature space constructed by
the first three slowest features are showed in Figure 7.

Since in each figure, samples of EAs on all benchmark
functions are included, and the samples of same EA on dif-
ferent benchmark functions are hard to separate, in this ex-
periment, we just mark samples of di↵erent EAs with di↵er-
ent colors, regardless of their di↵erence between benchmark
functions.
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Figure 7: Sample distribution of EAs on di↵erent

landscapes of all benchmark functions in the ob-

tained feature space, the samples of di↵erent EAs

are represented by di↵erent colors and shapes of

mark.

From Figure 7, same conclusion as that obtained from
Figure 6 can be obtained.

4. CONCLUSIONS
This paper presents a feature learning method for ana-

lyzing the discriminative collective behavior of EAs. The
key component of the method is an unsupervised learning
method named Slow Feature Analysis (SFA). Experiments
based on four EAs and six benchmark functions are designed
to investigate the ability of the presented method. Experi-
ment results show that 1) the presented method can extract
discriminative features of one-generation collective behavior
of di↵erent EAs; 2) In the feature space constructed by the
extracted slow features, the aggregative and discriminative
nature of the samples are observed clearly; 3) In the feature
space, the similarity relationship between di↵erent EAs are
somehow stable given the variation of fitness landscapes; 4)
The one-generation collective behaviors of DE (or GA) on
di↵erent fitness landscapes adopted in this paper are not
distinguishable, but this should not lead to the conclusion
that the performance of DE (or GA) on di↵erent problems
(fitness landscapes) are same.
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APPENDIX
Evolutionary algorithms and benchmark functions for anal-
ysis in this paper are introduced in this part.

A. EVOLUTIONARY ALGORITHMS
Four classical EAs are chosen to investigate the ability and

legality of the method presented above. The introduction of
the four algorithms are described here, and the parameters
of EAs are listed in TABLE 1:

A.1 Classical EP (CEP)
CEP [15] generates the o↵spring by mutation operation,

Table 1: EAs’ parameters

Algorithm Fix Parameters

Initialization of self-

adapted parameters

CEP
⌧ = 1p

2
p

D

⌧

0 = 1p
2D

⌘

i

(j) = 3

DE
F = 0.5
CR = 0.9

ES

⌧ = 1p
2
p

D

⌧

0 = 1p
2D

�

µ

= 7

⌘

i

(j) = 3

GA
Pc = 0.8
Pm = 0.05
Re = 0.1

one of the significant characteristics in CEP is that the re-
combination operator is inexistent. The mutation is realized
by adding random value to old individuals.

a. Mutation:

x

i

0(j) = x

i

(j) + ⌘

i

(j)N
j

(0, 1) (13)

⌘

i

0(j) = ⌘

i

(j)exp(⌧ 0
N(0, 1) + ⌧N

j

(0, 1)) (14)

Where x

i

0(j), x
i

(j), ⌘
i

0(j) and ⌘

i

(j) denote the j-th di-
mensionality of the vectors x

i

0, x
i

, ⌘
i

0 and ⌘

i

, respectively.
Besides, for each j in equation (14), N

j

(0, 1) represents a
random value which subjects to standard normal distribu-
tion.

b. Selection: (µ + �) selection. That is, µ parents are
allowed to breed � o↵spring, and these parents and o↵spring
populations are merged, then select the best µ individuals
from the (µ+ �) individuals.

A.2 DE
DE [10] creates new o↵spring by adding the weighted dif-

ference between two parents to a third parent. The opera-
tions are listed below [10]:

a. Mutation:

x

i

0 = x

r1 + F · (x
r2 � x

r3) (15)

b. Crossover:

x

i

00 =

⇢
x

i

if rand > CR

x

i

0 if rand  CR

(16)

c. Selection: greedy criterion. The new generated indi-
vidual x

i

00 is compared with the original individual x
i

. If
the fitness of x

i

00 is better than x

i

, then x

i

00 is selected as
the next generation; otherwise, the old value x

i

is retained.

A.3 ES
In this paper, (µ,� ) ES [2] is adopted. Compared to CEP,

recombination operation is applied to ES, and the selection
operation has a discrepancy.

a. Recombination:

x

i

0 =
(x

j

+ x

k

)
2

, j 6= k (17)

b. Mutation:

x

i

00(j) = x

i

0(j) + ⌘

i

(j)N
j

(0, 1) (18)
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Table 2: Benchmark Functions

Function Name Definition Properties

The Ackley’s Function F

ackley

(x) = �20exp(�0.2
q

1
D

P
D

i=1 x
2
i

)� exp( 1
D

P
D

i=1 cos(2⇡xi

)) + 20
Multimodal
Separable

The Elliptic Function F

elliptic

(x) =
P

D

i=1 (10
6)

i�1
D�1

x

2
i

Unimodal
Separable

The Rastrigin’s Function F

rastrigin

(x) =
P

D

i=1[x
2
i

� 10cos(2⇡x
i

) + 10]
Multimodal
Separable

Rosenbrock’s Function F

rosenbrock

(x) =
P

D�1
i=1 [100(x2

i

� x

i+1)
2
+ (x

i

� 1)2]
Multimodal

Fully-nonseparable

Schwefel’s Problem 1.2 F

schwefel

(x) =
P

D

i=1

P
i

j=1 xi

2 Unimodal
Fully-nonseparable

The Sphere Function F

sphere

(x) =
P

D

i=1 x
2
i

Unimodal
Separable

⌘

i

(j) = ⌘

i

(j)exp(⌧ 0
N(0, 1) + ⌧N

j

(0, 1)) (19)

The parameters in the above equations denote the same
thing as in CEP.

c. Selection: (µ,� ) selection. That is, µ parents are al-
lowed to breed � o↵spring, then select the best µ individuals
from the � individuals.

A.4 GA
GA [7] is a typical evolutionary algorithm. In GA, the

individuals participated in the process of recombination and
mutation are chosen from parental population.

a. Selection: roulette wheel selection.
b. Recombination: randomly generated a number be-

tween 0 and 1, named ↵, then

x

i

0 = ↵ · x
j1 + (1� ↵)x

j2 (20)

c. Mutation: Gaussian mutation.
In Gaussian mutation, the original genetic values are re-

placed by random values which subject to normal distribu-
tion, and these random values can be derived from uniform
distributed values according to equation (21).

Q = µ+ � · (
12X

i=1

rand(i)� 6) (21)

Where rand(i) means the random value subject to uni-
form distribution and Q represents the random value sub-
jects to normal distribution N(µ,� 2). If the range of the
genetic value is [lb, ub], then µ and � can be replaced by:

µ =
lb+ ub

2
(22)

� =
ub� lb

2
(23)

Consequently, the new genetic value x

k

0 can be written as
below:

x

0
k

=
lb+ ub

2
+

ub� lb

6
· (

12X

i=1

rand(i)� 6) (24)

B. BENCHMARK FUNCTIONS
As shown in Table 2, six benchmark functions [9] adopted

in this paper are the classical benchmark functions in the
area of continuous optimization, and their properties repre-
sent several di↵erent landscapes. The dimensionality of all
the functions are set to 30. And the global optimum is the
solution that has the minimum function value.
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