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ABSTRACT
Intrinsic motivation and novelty search are promising ap-
proaches to deal with plateaus, deceptive functions and other
exploration problems where using only the main objective
function is insufficient. However, it is not clear until now
how and if intrinsic motivation (novelty search) can improve
single objective algorithms in general. The hurdle is that us-
ing multi-objective algorithms to deal with single-objective
problems adds an unnecessary overhead such as the search
for non-dominated solutions. Here, we propose the Curi-
ous algorithm which is the first multi-objective algorithm
focused on solving single-objective problems. Curious uses
two subpopulations algorithms. One subpopulation is ded-
icated for improving objective function values and another
one is added to search for unknown regions of space based
on objective prediction errors. By using a differential evolu-
tion operator, genes from individuals in all subpopulations
are mixed. In this way, the promising regions (solutions
with high fitness) and unknown regions (solutions with high
prediction error) are searched simultaneously. Because of
thus realized strong yet well controlled novelty search, the
algorithm possesses powerful exploration ability and outper-
forms usual single-population based algorithms such as dif-
ferential evolution. Thus, it demonstrates that the addition
of intrinsic motivation is promising and should improve fur-
ther single objective algorithms in general.
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1. CURIOUS
Curious is a multi-objective algorithm for single-objective

problems based on the general subpopulation framework [2].
The algorithm has two subpopulations. One for novel in-
dividuals called novel subpopulation and the other for the
fittest individuals in the original objective function called
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main subpopulation. The choice of using two subpopula-
tion instead of one single population is to avoid deleterious
competition that could make one side (novelty or objective)
stronger than the other. For a deeper discussion please refer
to [2].

1.1 Initialization
Novel and main subpopulations are initialized to the same

individuals, i.e., they are initially the same. Regarding the
surrogate model, it is trained on a dataset with the same
size of the main subpopulation. This dataset is made of
randomly generated individuals, however, this dataset is cre-
ated separately and therefore is entirely different from the
main and novel subpopulations. In this first training stage
the surrogate model learns until the mean squared error is
smaller than an error threshold Iet.

1.2 Main Subpopulation
The main subpopulation behaves at least to a certain de-

gree like a single-objective differential evolution (DE) [1].
One of the differences from DE is that the mutation oper-
ator selects individuals randomly from all subpopulations.
The objective here is to let individuals from the novel sub-
population influence individuals in the main subpopulation,
allowing the creation of mutation vectors close to novel or
unknown regions of space. In fact, this creates a force to
novel regions of space.

For each individual, DE’s mutation is applied, with the
exception that randomly selected individuals may come from
any of the subpopulations.

Differently from DE’s crossover, where there is only one
way to create a trial vector, Curious has three ways:

• Usual crossover - The usual crossover is the same as
the one used by DE;

• Novel crossover - Novel crossover is equation-wise the
same as the usual crossover, however, the ith individ-
ual from the novel subpopulation ni is used instead of
parent xi. This crossover is added to influence further
the main subpopulation with novel subpopulation’s in-
dividuals. The influence here is of a different type and
degree, since becoming the parent of a crossover ex-
erts extreme influence over the final trial vector (much
more than with mutation vectors);

• Random individual - The trial vector becomes a ran-
domly created individual. Random individuals are very
important ingredients to construct surrogate models
and that is why they are included here.
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Crossovers have a chance of 50% of being a usual crossover,
25% of being a novel crossover and 25% chance of using a
random individual as a trial vector. Basically, these percent-
ages reflect a balance between two forces: the main subpop-
ulation force of creating fitter solutions by perturbing the
fittest solutions (50%) and the novel subpopulation force of
creating novel solutions by perturbing novel solutions (25%)
or just creating random ones (25%). The selection process
is the same as DE’s one, i.e., parent xi is substituted by the
trial vector ui if and only if ui is fitter than xi.

1.3 Novel Subpopulation
The novel subpopulation behaves mostly like an archive,

being updated every once in a while when a new individual
(i.e., a trial vector ui) has a novelty that is greater than one
individual in the novel subpopulation.

In practical terms, the novel subpopulation has two main
functions. One function is to propel solutions to unknown
regions of the search space, for example, by influencing the
creation of mutation or trial vectors. In this way, barely un-
derstood (prediction-wise) candidate solutions will be better
investigated. This is based on the reasoning that novel solu-
tions are present in unexplored or complex regions of space
that deserve more attention of the optimization algorithm.
The second function is to train the surrogate model in re-
gions where it does not predict well. The assumption here
is that the surrogate model will improve further by training
where it does not predict well as well as will not forget to
some degree what it learned previously. That is why choos-
ing a good surrogate model is important and comparison
between surrogate models is an important research point,
however, it goes out of the scope of this article.

1.4 Surrogate Model
Every generation the surrogate model is used to evaluate

the novelty of individuals. In the end of every generation,
the surrogate model is updated using the novel subpopula-
tion as training dataset. However, this time the learning
occurs for only Us steps and stops. This allows the model to
improve somewhat its accuracy but avoid both overfitting
and fine tuning. Recall that fine tuning is also unnecessary
for surrogate models in novelty search, because surrogate
models here need to be able to precisely compare candidate
solutions instead of precisely evaluating one.

2. EXPERIMENTS
In this Section the objective is to verify the benefits or

demerits of adding an intrinsic motivation (novelty search)
to an optimization algorithm. Curious is similar to DE in
many ways and although it employs a surrogate model, the
surrogate model is used only for calculating novelty (i.e.,
the surrogate model was not used to reduce function eval-
uations or substituting the objective function in any form).
Therefore it seems plausible to compare Curious to DE.

Experiments were conducted for both DE and Curious in
all noiseless 24 problems of the BBOB-2015 benchmark.

2.1 Settings
The parameters for Curious is presented in Table 1. DE

uses the same parameters, i.e., same CR, F and population
size. All tests had a maximum number of function evalua-
tions set to 105 ·dim, where dim is the number of dimensions
of the problem. Since the search domain for BBOB functions

Table 1: Curious’s Parameters
Main Subpopulation size 100
Novel Subpopulation size 100

CR 0.2
F 0.1

Surrogate Model
Type Neural Network

Hidden layer 1
Hidden nodes 5 · dim

Hidden nodes’ type Logistic
Output nodes’ type Linear
Training algorithm Levenberg-Marquardt

Error function Mean Squared Error

Initial error threshold (Iet) 10−5

Updating steps (Us) 30

Table 2: Mean Results in two dimensions (dim = 2).
∆fDE and ∆fCurious are the mean difference between
the optimum fitness and the best fitness found by
respectively DE and Curious algorithms. The re-
ported results were averaged over 15 instances of
the same problem. Values below 10−4 are consid-
ered 0. Functions where there was no difference in
performance between algorithms were omitted.

Function ∆fDE ∆fCurious ∆fDE − ∆fCurious

f12 0.829 0 0.829
f15 0.066 0 0.066
f21 0.278 0 0.278
f22 0.513 0 0.513
f23 0.108 0.101 0.007
f24 0.038 0.009 0.028

is [−5, 5]D, all variables were also limited inside the [−5, 5]
range.

2.2 Results
Table 2 shows the results for dim = 2 (i.e., 2 dimensions).

Curious surpassed DE in six out of the 24 problems and
behaved similarly in the remaining ones. This result alone
justifies the employment of intrinsic motivation in single ob-
jective optimization.

It is possible to see that Curious has, in comparison with
DE, relatively less difficulties with functions (problems) that
continuously change directions (f12) and multi-modal func-
tions with weak structure (f21, f22, f23 and f24). However,
tests in higher dimensions are needed to study deeper the
effects.
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