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ABSTRACT
BeamGA is a general hybrid heuristic framework that can
be used to solve the median problem in comparative ge-
nomics, where any distance function can be used. It starts
with a heuristic search approach (local beam search) in or-
der to generate a number of solutions. Then a Genetic Al-
gorithm (GA) is applied to refine the solutions. It considers
true biological evolution scenarios by applying the concept
of common intervals during the GA optimization process.

CCS Concepts
•Theory of computation→ Evolutionary algorithms;
Stochastic approximation; •Computing methodologies
→ Heuristic function construction;

Keywords
Median Problem; Bioinformatics; Genetic Alorithm; Beam
Search

1. INTRODUCTION
The median problem is a well known problem in compara-

tive genomics that can be applied to derive the most reason-
able rearrangement phylogenetic tree for many species. The
Median problem has two important properties that can help
in finding good solutions with reasonable computational ef-
fort [3]: the non-uniqueness of the problem solution, and
the probability to find the median on or near the N gene
orders rather than the center. Genomes with equal number
of genes but different order can be represented as permu-
tations. Specifically, we are concerned with finding a per-
mutation M that minimizes the sum of distances between
M and a set of N permutations π. The distance between
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two genomes dπ1,π2 is defined as one of the genomic dis-
tance measures. Computing the distances between genomes
is quite difficult and is suspected to be NP-hard [3]. The
median problem can be defined as follows:
Input : given three signed permutations π1, π2, and π3 that
represent three different taxa, where different signs mean
that genes are taken from opposite DNS strands.
Output : finding the fourth permutation (median) φ, with the
smallest possible distance score S(φ) from the three original
permutations, such that:
S(φ) = dπ1,φ + dπ2,φ + dπ3,φ, S(φ) ≥Mmin, S(φ) ≤Mmax

Mmin = [
dπ1,π2+dπ1,π3+dπ2,π3

2
]

Mmax = min{(dπ1,π2 + dπ2,π3), (dπ1,π2 + dπ1,π3), (dπ2,π3 +
dπ1,π3)}

Different techniques have been developed in order to solve
this problem. In [3] a branch-and-bound exact method based
on reversal distance was applied. However, this approach
cannot provide efficient results when the distance between
the species is reasonably large. Other methods have been
proposed based on common intervals and/or other evolu-
tionary distances. A common interval [1] is a subset of
genes that can be rearranged but still appear joined to-
gether in two or more genomes (permutations). For exam-
ple, for two permutations: P1 = {1, 2, 6, 7, 4, 3,−5, 8} and
P2 = {7, 1,−6, 4,−2,−5,−3, 8}, {1, 2, 4, 6, 7} is a common
interval, while {2, 6, 7} is not. In [1] an exact algorithm is
proposed to solve the reversal median problem using com-
mon intervals. However, the median problem is known to
be NP-hard [3], and exact algorithms become prohibitive
for large problem sizes. Thus, heuristic approaches are con-
sidered as an efficient alternative.

In this paper, we propose a new hybrid framework combin-
ing a greedy search and a heuristic approach for solving the
median problem aiming to overcome the limitations of other
approaches with respect to speed and number of genes. In
addition, any efficient evolutionary distance can be applied
in the proposed general framework. We start with a greedy
search initialization step, using beam search [2], followed by
a Genetic Algorithm (GA), which is applied only on com-
mon intervals. To our knowledge, this combined approach
is not applied before for thiscproblem. The computational
results show that the algorithm is able to handle large num-
ber of genes in good time and accuracy performance.
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Figure 1: Initialization Phase

2. METHOD: BEAMGA
BeamGA is based on two phases, an initialization phase,

where a beam search is applied in order to generate the
initial population, and an optimization phase using a GA,
operating on common intervals.

Initialization Phase: Beam Search.
Given three signed permutations π1, π2, π3, and r: the

current number of rearrangement operations (levels) that
can be applied on π, where one random operation is done
per level to generate a random permutation; k: the number
of random neighbors (permutations) that can be generated
from π at level r, where one random operation is done to
generate one random neighbor; q < k: the number of best-
scoring neighbors that are added to priority queue T (beam
size), and m: maximum GA population size.

First, we generate a population of size m using beam
search. The search starts by initializing a priority queue
T to be empty. For each πi, we generate k neighbors by per-
forming one rearrangement operation on the previous per-
mutation, and put the best generated q (beam size) from k
neighbors in T based on their median scores. The process is
repeated for r levels. Finally, we pick m best-scoring S(φ)
from T and add them to P (the initial GA population). the
different steps of the beam search are shown in Fig. 1.

Optimization Phase: Genetic Algorithm.
Given an initial population P , each individual in the popu-

lation (a possible median φ) is assigned a fitness value based
on its median score S(φ) with respect to the three original
permutations. Then a GA is applied. Parents are selected
using tournament selection, crossover is performed by swap-
ping a randomly chosen common interval between parents
to produce two children, and mutation is done on each child
by a random rearrangement operation (e.g reversal) within
a randomly chosen common interval. Then, elitist replace-
ment chooses the best individuals from the new and the old
generations. The GA is repeated until the perfect median is
reached or no improvement can be achieved for a number of
iterations.

3. RESULTS
Reversals are randomly applied to the identity permu-

tation to generate three sets of three signed permutations
(taxa), simulating a shared common ancestor, where: i is
the number of random reversals that can be applied on the
identity permutation in order to get the three original per-

mutations π for every taxon (i = 2, 6, or 10); r ≤ i/2 is
the current level, where i/2 is the maximum number of re-
arrangement operations (levels) that can be applied on π;
n is the number of genes (25, 50, . . . , 700); probability of
crossover Px = 0.8, and probability of mutation Pm = 0.1.

Table 1: Results for n from 25 to 700, i = 6.
n Actual

score
Min
of min
best
score

Avg
of min
best
score

Avg of
avg best
score

Total
time
(s)

25 14.5000 16.0000 30.3333 31.8748 1.0291
200 18.0000 22.0000 46.0000 47.1142 2.0563
700 18.0000 22.0000 46.6667 48.0960 6.0468

Table 2: Results for i = 2, 6 and 10, and n = 50 .
i Actual

score
Min
of min
best
score

Avg
of min
best
score

Avg of
avg best
score

Total
time
(s)

2 5.5000 6.0000 13.6667 14.3879 0.7891
6 17.0000 19.0000 39.0000 40.0976 1.0124
10 28.5000 36.0000 62.3333 63.6603 1.4708

Two sets of experiments are conducted, where accuracy
and time performance are reported for each. One set is when
varying value of n, while keeping i fixed. The other is when
varying value of i, while keeping n fixed. Experiments are
repeated 10 times for each of the three sets of taxa and the
best score is calculated for each experiment. The results are
summarized in Tables 1 and 2. The results show that the
minimum of the minimum best score is close to the actual
score. Table 1 shows that the maximum time was 6 seconds
when n = 700, but the time taken is increasing linearly with
n. Table 2 also illustrates a linear time performance with i
for n = 50, and a maximum of only 1.5 seconds for i = 10.

4. CONCLUSION
We proposed a new hybrid heuristic approach for solv-

ing the median problem, namely BeamGA. The accuracy of
BeamGA for the median score is excellent when compared
to the actual score. Also the approach shows a very good
time performance. For more accurate assessment, the per-
formance needs to be tested on real biological data. The
technique can also to be used to solve the median problem
using any distance measure, including transposition.
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