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ABSTRACT

We present the next step in our study of cognitive abilities by us-

ing evolutionary computation. To this end we use a spatial, devel-

opmental, neuroevolution system. We use our existing system to

evolve ANNs to perform simple abstractions of the cognitive tasks

color identification and reading. We define these tasks to explore

hypotheses about the the Stroop effect. Our results show the versa-

tility of our evolutionary system. We successfully replicate many

of the qualities of the Stroop effect.
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1. INTRODUCTION
Much research in cognitive psychology has been devoted to goal

directed behavior or to the mental processes involved in focusing

on relevant information. One of the paradigmatic tasks in cognitive

psychology is the Stroop task in which people are presented with

words in color (e.g., RED in green) and asked to pay attention to the

color and ignore the meaning of the word. The current work applies

evolutionary algorithms (EAs) to study the mechanisms involved in

the Stroop task.

In his original work Stroop presented participants with lists of

stimuli on a card and asked them to name the color of the ink as fast

as possible. Stroop used two conditions, Incongruent (e.g., RED in

green) and Neutral (i.e., patches of colors). Responding was slower

to the incongruent condition than to the neutral condition. Stroop

suggested that the difference between incongruent and neutral con-

ditions was an indication for the automaticity of word reading. Im-

portantly, when he asked participants to read the words and ignore

their color, word reading was not hampered by the incongruent col-

ors. Modern, computer aided research into the effect also includes

Congruent trials (i.e., Green in green) that Stroop could not use in

his experiments because when one presents a number of stimuli on

a card, participants may switch to reading the words rather than

naming the colors.
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In this work we present new results from our study of cogni-

tive phenomena following our previous exploration into the Stroop

effect [1]. We employ an Evolutionary Algorithm (EA) on popu-

lations of randomly generated Artificial Neural Networks (ANNs)

in order to evolve them to perform cognitive tasks without directly

designing them to fit a given theory. This allows us to explore the

specific conditions under which certain phenomena may occur.

2. THE SYSTEM
We design our evolutionary system with an eye towards nature.

We focus on three important traits which we integrate as design fea-

tures. Our system is ANN based, developmental, and spatial. We

chose neuroevolution because the artificial neuron is an abstraction

of the biological neuron (though the two are by no means identi-

cal). A individual’s gene does not map directly to a specific simple

element in the final network. Rather, it acts as an instruction to be

performed by the neurons in the developing network during its de-

velopment. Every artificial neuron in our system is located in some

point in a virtual space and all actions are location based.

The ANNs in our system consist of three distinct layers: input,

output, and hidden. Each one of the layers exists in its own space

defined by the user. The user defines the number of dimensions

each layer has and the size of each dimension. Our genome is en-

coded as a linear array of genome atoms (or genes). Each gene is a

set of numbers that specify a developmental step. The user controls

the attributes of the ANN and the evolutionary algorithm with run

parameters.

We used single-point crossover that allows genome size to change

by picking crossover location to each parent separately. Mutation

is uniform. When a spot in the genome then either the atom itself is

randomly changed or a small genome segment beginning with the

chosen atom is copied to another random location in the genome.

In our runs below we used a mutation rate of 0.02, and a crossover

rate of 0.8. Our system uses standard tournament selection that we

used with tournament size of 4.

We used a diversity maintenance measure that limits the number

of individuals with similar behavior profiles (for brevity we will

not explain these profiles here). Our diversity maintenance system

allows an individual to be selected only if the number of its neigh-

bors already selected is lower than a 30 (this parameter is tunable

by the user). In the runs below the input grid was of size 4× 5× 5
the output grid was of size 4 × 5 and the hidden network grid was

of size 8× 10× 10. We set the limit on the number of hidden layer

neurons and of network links to 400 and 4000, respectively.

Our system supports multiple encoding schemes. There are sev-

eral different types of actions that a gene can cause. The probability

of a gene encoding a certain action is controlled by the user, who

chooses how much weight to assign to each of the possible gene
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types. Gene types include genes for adding new neurons, genes for

splitting existing neurons, genes connecting neurons with links etc.

The tasks we examine here are classification tasks where the

ANN is expected to tell a number of different classes apart. The

output is 2-dimensional, and each row stands for one of the pos-

sible classes. Decision is made by plurality rule. Our convention

is that the first row stands for red, the second stands for green, the

third stands for blue and the forth is reserved future use.

We see the 3-dimensional input grid as made up of 4 2-dimensional

grids: 3 colored “visual field” grids (red, green and blue) and 1

“task definition” grid which is used to differentiate between differ-

ent tasks. In order to evaluate evolved individuals we test their per-

formance on test-cases after the runs, and return the rate in which

they return correct outputs (we call this a benchmark score and we

normalize it to the [0,1000] range).

Our first task is the Color Perception task (or CP). In the CP task

we expect the forth grid of the input to contain all -1. Our second

task is the Color Reading task (or CR). In this task the ANNs are

required to read a colored symbol in the input. In the CR task we

expect the forth grid of the input to contain all 1. Notice that a

symbol can be written in the color it stands for. we refer to inputs

where the symbol and color match as congruent to inputs where

they conflict incongruent, and to the rest as neutral.

previously [1] we were successful in separately evolving net-

works to become proficient in both the CP and the CR tasks. We

also achieved a bidirectional interference pattern by evolving for

reading and color at the same time resulting in networks that did

significantly better on congruent inputs than on incongruent ones

in both tasks.

3. EXPERIMENT
Following our previous work, we try to evolve ANNs which ex-

hibit more Stroop like behavior. We focus on the asymmetry that

exists between the interference when the task is naming colors and

the lack of interference when the task is reading words. We do this

by manipulating the effect that different types of inputs have on fit-

ness during the evolutionary run. Below we present one of our best

results.

In the experiment We calculated the fitness score and the bench-

mark score using 12 test inputs from The CP Experiment and 21

test inputs from the CR Experiment. Each fitness test-case from

the CR test suite affected the fitness result as if it appeared 30 times

in the suite. After the runs terminated, we checked the best in-

dividuals on congruent and incongruent inputs separately in both

tasks. There are 3 congruent inputs and 6 incongruent inputs all in

all (These numbers hold for both the CP and the CR tasks). The

fitness function, which was weighted to bias evolution in favor of

the CR task.

Looking at congruent inputs the best solution in a simulation had

a mean benchmark score of 749.9962 (σ = 219.0) in the CP task.

Looking at incongruent inputs the best solution in a simulation had

a mean benchmark score of 493.3311 (σ = 141.0) in the CP task.

Looking at congruent inputs the best solution in a simulation had

a mean benchmark score of 746.6633 (σ = 246.7) in the CR task.

Looking at incongruent inputs the best solution in a simulation had

a mean benchmark score of 738.3301 ((σ = 191.4) in the CR task.

We conducted one-way ANOVA on the 4 score types (F (3, 396) =
38.2965). The difference between the congruent and incongruent

is significant in the CP task (p < 0.0001), but it is insignificant in

the CR task (p = 0.9915). This approach successfully creates the

desired asymmetry that is an attribute of the Stroop effect.

Among our inputs for the CP task there are 3 neutral inputs. In

the experiment results on neutral CP inputs fell somewhere in be-

tween the congruent and incongruent scores. The best solution in a

simulation had a mean benchmark score of 596.6617 (σ = 202.6)

on neutral inputs. In light of these results we can say that our ex-

periments are Stroop like also in the classical sense using neutral

inputs. On the other hand this is also where our results differ some-

what from the Stroop effect as it appears in humans. While in hu-

mans the difference in performance between congruent and neutral

tests (known as the Facilitation Gap) is small to negligible, in our

results this gap is quite wide.

4. CONCLUSIONS
We presented a new results in our study of the stroop effect using

our developmental spatial neuroevolution system. Our system em-

ploys various measures to make developmental process more like

natural development. We successfully replicated, in our evolved

networks, the phenomenon interference due to conflict between in-

formation from two aspects. We also succeeded in establishing that

this conflict can be directional, by biasing fitness function in favor

of the reading task. We expect that further exploring the conditions

that will lead to such better approximations of the Stroop effect

may give us better insight into the way such an effect comes to be.

We plan to expand our system further and try to use it to find

a way of evolving a pattern more similar to the Stroop effect as it

manifests in humans. Later, following work by Dadon et. al [2]

we plan to test in more depth the effect of short exposure times

on the Stroop effect. We are currently using our system to explore

other cognitive effects such as the Simon Effect and to explore the

evolution of numerical cognition.

Our system itself is still a work in progress, and we want to ex-

pand it and use it to look into some new areas and add more func-

tionality in order to explore more complex behavior. An obvious

extension would be to allow for the evolution of recurrent networks

for domains with multiple where the network must react according

to new input as well as its own output (e.g. navigation tasks).
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