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1. INTRODUCTION
Within the context of biological sequences analysis, regu-

latory motifs are short and recurring patterns of nucleotides
residues that are presumed to have some common biological
meaning. The overall gene expression is primarily controlled
by protein factors, which bind to specific regions of the gene
called transcription factors binding sites (TBFS).

The main objective of regulatory motifs discovery is to
identify the ones responsible for the start of gene expres-
sion within a particular regulatory context. This problem
consists in identifying which are overrepresented regulatory
motifs, in a set of genes that are expressed by a specific tran-
scription factor, within their respective promoter regions rel-
ative to other genes in the set.

In the past, TBFS were found using experimental tech-
niques such as DNase footprinting, gel-shift or reporter con-
struct assays. With the growing number of sequenced geno-
mes, it was necessary to emerge a fast and reliable way to
analyze all the data generated. Likewise, the computational
techniques have been gaining prominence in the analysis of
biological sequences. There are several motifs discovery ap-
proaches in the literature. They can be roughly divided into
three main approaches: exhaustive techniques, probabilistic
techniques and machine learning techniques.

In this paper, we present DMEC (Discovery Motifs by
Evolutionary Computation), a method that uses evolution-
ary computation to find similar motifs in upstream regions
of co-expressed genes. We particularly show that evolution-
ary algorithms can be very effective, and they achieve results
equal to, or better than, other traditional approaches such
as expectation maximization and Gibbs sampling.

2. MATERIALS AND METHODS
The main algorithm was developed using the Java pro-

gramming language, release 8u65 (64 bits). The central idea
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of DMEC is to evolve a population of position specific scor-
ing matrix (PSSM) to find a solution that maximizes the
relative entropy or Kullback-Leibler divergence.

2.1 Position specific scoring matrix
A PSSM, also known as PWM, is a weight matrix created

from a multiple local sequences alignment. It is commonly
used to represent a probabilistic model of a motif.

The first step in creating a PWM process starts with the
count of the amount of residue in each alignment column. To
prevent miscalculations pseudocounters may be used. There
are several approaches to calculate pseudocounters in the
literature, the best known being the Laplace’s Rule. This
approach adds 1 to count each residue, avoiding calculation
errors when residues is not found in certain columns. This is
particularly important because the 0 does not have a defined
value log. This restriction will be better explained later. At
the end of this stage we have the position frequency matrix
(PFM) created.

The next step is the development of the position probabil-
ity matrix (PPM). Its creation is quite simple and consists in
dividing each PFM value by the total number of sequences
plus the pseudocounters.

The following two steps are the last to create the PWM.
Once created the PPM, we can use Bernoulli’s model which
assumes that the background model are independent suc-
cessions of residues. Thus, we can calculate the a priori
probability of each residue in the dataset or take the value
0.25 to nucleotides residues or 0.05 for amino acids residues.
After obtaining the a priori values, each row of the PPM are
divided by their respective residue prior values.

The last step is the logarithm calculation for each value
resulting from the previous step. The logarithm calculation
allows add up instead of multiplication. This is a security
measure aimed at not overflow values when very small num-
bers are multiplied.

2.2 Initial population and structure of chro-
mosomes

The initial population is randomly chosen, and its rep-
resentation is given by an array of integers, which chromo-
somes are lines. Each chromosome can be seen as a multiple
local alignment, where their genes store the start positions
of each possible motif. A previous value called w, which
refers to the size of the motif to be found, must be passed as
a parameter to the algorithm. The value of each gene must
respect the Equation 1, because, otherwise, it may contain
values that exceed the total size of each sequence.
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T = L− w + 1 (1)

Where:

• T represents the maximum value that may receive each
gene;

• L represents the total size of each sequence;

• w represents the size of the sought motif.

2.3 Evaluation and selection
The evaluation of each individual was calculated using

the relative entropy, or Kullback-Leibler information. The
relative entropy (see Equation 2) is a measurement that in-
dicates how much a motif deviates from the background dis-
tribution of nucleotides.

F =
w∑

i=1

λ∑

j=1

ci,j log
qi,j

pj
(2)

Where F is the value of score to be calculated, w is the size
of motif, λ is the number of letters of the alphabet (λ = 4 for
nucleotides and λ = 20 for amino acids), ci,j is the number
of times a particular base λj appears in column wi, qi,j is
the conditional probability Pr(λ|wi) and pj representing the
background probability of residues distribution.

After the random initialization of chromosomes, each in-
dividual is transformed into a subsequence of size w. They
are positioned one below the other, forming an n×w matrix,
where n is the number of sequences available in the dataset
and w is the size of the motif to be discovered.

The goal is to have a score that indicates the degree of
confidence from motifs evaluated. The larger the F value,
the greater the chance the motif has been generated by the
model. In other words, the F value corresponds to maxi-
mum likelihood Pr(motif |model), regarding the probability
background Pr(motif |background).

After the fitness calculation, the selection is performed
using the tournament technique. Two individuals are ran-
domly selected, and their scores are compared. The chro-
mosome that has greater fitness wins, and consequently it is
selected to compose the next generation of the population.

2.4 Matrix recombination
Recombination involves mixing two or more matrices of

the population. In general, two individuals are randomly
selected to exchange genes between them. The recombi-
nation ends when the intermediate population reaches the
same size as the initial population. The purpose of this op-
erator is to keep the genetic diversity among the elements
and avoid premature convergences.

2.5 Matrix mutation
The matrix mutation changes a set of individuals ran-

domly chosen according to a previously established muta-
tion rate. Also, a random number of genes change to a
value that respects the limit imposed by Equation 1. The
mutation is only effective if the individual’s fitness value im-
proves compared to the last value. Otherwise, the mutation
is not performed. Because the mutation can only be carried
out in cases of fitness improvement, elitism was not enabled.

2.6 Slide window
This operator add a heuristic based on opt operators. Its

slides a window to the right or left according to a parameter
p previously established. If p < 0.5, then the window slides
to the left, otherwise, it slides right.

2.7 PSSM to find out more motifs
In many cases, the nucleotide sequences have more than

one motif in their structure. Thereby, it was possible to
use the PSSM matrix generated by running the DMEC to
find these regions. To do so, we divide the target dataset
into “pieces” of size of size w, or w-mers, and calculate a
p-value to each one. The p-value is the probability to find
a score greater than or equal to that observed randomly,
i.e. generated by the background model. The regions that
possess a p-value smaller than a cutoff entered by the user,
are classified as possible motifs.

3. RESULTS
We tested our method in several real and synthetic data-

sets, however, for lack of space we just put the results in the
real dataset CRP (cAMP protein receptor). This dataset
has 18 sequences with 105 residues each. In addition, it has
23 motifs experimentally identified.

Table 1: Real positions vs discovered positions.

Sequence Real Position Discovered Position

cole1 17, 61 61

ecoarabop 17, 55 55

ecobglr-1 76 76

ecocrp 63 63

ecocya 50 50

ecodeop 7, 60 7, 60

ecogale 42 42

ecoilvbpr 39 20

ecolac 9, 81 9

ecomale 14 14

ecomalk 29 61

ecomalt 41 41

ecoompa 48 48

ecotnaa 71 71

ecouxu-1 17 17

pbr-p4 53 53

trn9cat 1, 85 84

tdc 78 76

4. CONCLUSION
We presented the DMEC, a novel algorithm based on evo-

lutionary computation to efficiently solve the search of mo-
tifs. We have also made a comparison of our algorithm to
other well-known approaches in literature, and concluded
that the evolutionary computation was able to achieve equal
or better results. For future work, we will implement an ef-
ficient and automatic way to find the size of w. We will also
work on a method to penalize sequences that do not have
motifs. Our approach works on the premise that each se-
quence has at least one motif copy. In Datasets that have
sequences without motifs, the results may not be satisfac-
tory.
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