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ABSTRACT
Finding and proving lower bounds on black-box complexi-
ties is one of the hardest problems in theory of randomized
search heuristics. Until recently, there were no general ways
of doing this, except for information theoretic arguments
similar to the one of Droste, Jansen and Wegener.

In a recent paper by Buzdalov, Kever and Doerr, a the-
orem is proven which may yield tighter bounds on unre-
stricted black-box complexity using certain problem-specific
information. To use this theorem, one should split the search
process into a finite number of states, describe transitions
between states, and for each state specify (and prove) the
maximum number of different answers to any query.

We augment these state constraints by one more kind of
constraints on states, namely, the maximum number of dif-
ferent currently possible optima. An algorithm is presented
for computing the lower bounds based on these constraints.
We also empirically show improved lower bounds on black-
box complexity of OneMax and Mastermind.
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1. INTRODUCTION AND MAIN IDEAS
Black-box complexity of an optimization problem is the

smallest expected number of queries a black-box search al-
gorithm needs to solve the problem, that is, to query one
of its optima. Various kinds of black-box complexities can
be studied: the unrestricted black-box complexity [4] allows
any kind of black-box search algorithms to be used, while,
for example, the unbiased black-box complexity [6] restricts
the set of allowed algorithms to the ones using only unbi-
ased variation operators. Comparing black-box complexities
of certain problem classes with the running times1 of existing

1A running time of a black-box algorithm is the number of
queries it did until an optimum is hit for the first time.
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randomized search heuristics helps to understand how good
they are and sometimes to construct better algorithms [3].

In this paper, we restrict ourselves to lower bounds for un-
restricted black-box complexities. Until recently, there was
only one general purpose method for constructing such lower
bounds based on information theoretic arguments [4, Theo-
rem 2]. This method uses the Yao’s minimax principle [7] to
reduce the lower bound analysis of randomized algorithms
to the lower bound analysis of deterministic algorithms. For
the latter, the theorem suggests to prove, based on the prob-
lem’s properties, the upper limit on the number of possible
answers to each query by some number k ≥ 2. This limits
the breadth of the decision tree of any deterministic algo-
rithm solving this problem. If every element of the search
space S is an optimum of exactly one problem instance, this
theorem proves a lower bound of dlogk |S|e − 1.

In 2015, an extension of this theorem was presented and
proven [1, Theorem 7]. The idea of this extension is based
on distinguishing several types of decision tree nodes of algo-
rithms solving the considered problem and proving, for each
type i separately, the maximum number Aij of different an-
swers, after which the next decision tree node has the type
j. This theorem is able to prove stronger lower bounds [1].

In the current research, we augment the description of the
problem, which consists of describing transitions between
decision tree node types as in [1], by proving the maximum
possible number of different optima Bi in a subtree of a
decision tree node of a type i for every possible i, which
should improve the lower bounds even further. Although
tracking the maximum possible number of optima is known
since [5], combining it with typed decision tree nodes is new.

We are not yet ready to present a theorem similar to The-
orem 7 from [1] which would allow to prove lower bounds
based on the knowledge, for all problem sizes, of the ma-
trix A = Aij and the vector B = Bi. However, to test if
this concept is useful to prove stronger bounds, we imple-
mented an algorithm which evaluates the lower bound given
the matrix A and the vector B. Apart from this algorithm
(which can be used by researchers to check if a certain way of
building A and B helps proving stronger bounds), we show
some promising empirical results for the well-known One-
Max problem, as well as for the Mastermind problem [2].

2. ALGORITHM OUTLINE
We briefly describe the proposed algorithm for finding the

lower bound on the problem’s unrestricted black-box com-
plexity for a certain problem size, given the node type in-
teraction matrix A and the vector B of maximum numbers
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n Simple Simple cfg Complex cfg Simple
lower Value Time Value Time upper

1000 100.999 112.927 0.000 121.174 2.031 200.687
2000 183.000 201.982 0.000 215.713 23.93 364.771
3000 260.000 285.833 0.002 303.867 84.01 519.447
4000 335.000 365.994 0.001 388.440 291.8 668.573
5000 407.000 443.999 0.002 470.649 822.1 813.821

Table 1: Results for OneMax

n Simple Simple cfg
lower Value Time

100000 6021.00 6407.92 0.632
200000 11358.0 12042.8 2.233
300000 16489.0 17449.0 5.474
400000 21495.0 22716.0 8.860
500000 26411.0 27885.0 13.84

Table 2: Results for OneMax using the simple con-
figuration and large n

of different optima in a node subtree. The algorithm imple-
mentation is available at GitHub2.

The brief idea of the algorithm is to lazily build an infinite
tree defined by the matrix A and fill it with the problem
instances, paying attention to the constraints of B. A naive
implementation would take roughly O(|S| ·D) time, where S
is the search space and D is the average depth of a problem
instance (that is, the answer). While D is often polynomial
in the problem size, |S| is typically exponential. We reduce
the running time using the following ideas.

First, multiple arcs from a node to nodes of the same type
can be processed at once, as the corresponding subtrees and
the size constraints are identical. Second, different nodes
of the same type will, in fact, accept different number of
problem instances, depending on the nodes above. However,
they behave the same until the constraint is hit for this node
or for any of the nodes above. The algorithm tracks how
much problem instances a subtree of an “ideal” node of type
t contains at level d for all possible t and d. For all “real”
nodes, these values will be the same for all d < d′, where
d′ depends on the actual node. Ideal and real nodes are
interdependent (e.g. the children of an ideal node are real
nodes), but when depths are taken into account, no circular
dependencies arise, so lazy evaluation resolves all the issues.

The running time of the algorithm as O(|B|2D(logS)2),
where D is the answer. Although it is still linear in D, it is
no more polynomial in the search space size S.

3. ONEMAX AND MASTERMIND
For both problems OneMax and Mastermind we devel-

oped two ways, which we call configurations, of generating
the matrix A and the vector B from the problem size N .

The simple configurations for both problems have only
two types, type 1 for the root node and type 2 for all other
nodes. Type 2 nodes have B2 equal to the maximum possible
number of different optima after receiving an answer to any
query:

(
n
bn/2c

)
for OneMax, n ·(n−1)n−1 for Mastermind.

The complex configurations for both problems have Θ(n)
types which, roughly speaking, differentiate between receiv-

2https://github.com/mbuzdalov/papers/tree/master/
2016-gecco-bbcomp-algo

n Simple cfg Complex cfg Ratio
Value Time Value Time r − 8/7

100 100.990 0.003 121.456 0.114 +0.0717
200 200.995 0.001 238.452 0.512 +0.0494
300 300.997 0.001 354.271 2.165 +0.0380
400 400.997 0.002 469.219 5.518 +0.0302
500 500.998 0.001 583.490 12.67 +0.0241
600 600.998 0.002 697.511 26.67 +0.0197
700 700.999 0.003 811.272 46.08 +0.0161
800 800.999 0.004 924.819 79.58 +0.0132
900 900.999 0.004 1038.09 118.9 +0.0106

1000 1001.00 0.005 1151.11 183.9 +0.0083
1100 1101.00 0.006 1264.04 283.4 +0.0063
1200 1201.00 0.007 1376.72 428.2 +0.0044
1300 1301.00 0.009 1489.27 619.6 +0.0027
1400 1401.00 0.012 1601.89 890.9 +0.0014
1500 1501.00 0.012 1714.17 1233 −0.0001

Table 3: Results for Mastermind

ing small, medium and large answers. For OneMax, both
small and large answers limit the number of optima severely,
while for Mastermind only larger answers do.

For OneMax, the results are shown in Table 1 along with
the running times of the algorithm. Small running times
for the simple configuration motivated us to run it for much
larger problem sizes. These results are shown in Table 2.
The new lower bounds are noticeably larger than the known
ones even for the simple configuration, and are even larger
for the complex configuration. The values of the simple con-
figuration fit, up to an additive constant not exceeding 2, to:

n

log2 n
+

n

(log2 n)2
+

n

(log2 n)3
+ . . . =

n

log2 n
· 1

1− (log2 n)−1
.

For Mastermind, the results are shown in Table 3. Here,
the complex configuration seems to improve the lower bound
by a constant factor close to 8/7.
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