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ABSTRACT
Traditional genetic programming only supports the use of
arithmetic and logical operators on scalar features. The
GTMOEP (Georgia Tech Multiple Objective Evolutionary
Programming) framework builds upon this by also handling
feature vectors, allowing the use of signal processing and
machine learning functions as primitives, in addition to the
more conventional operators [6]. GTMOEP is a novel method
for automated, data-driven algorithm creation, capable of
outperforming human derived solutions.

A challenge in this field is working with both large datasets
and expensive primitive functions. This paper outlines some
of the innovations Zutty et al. have introduced into the
GTMOEP framework in order to more efficiently evaluate
individuals and tackle new problems. These innovations in-
clude: Working with non-feature data, tiered datasets, sub-
tree caches, and initial population creation.
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•Computing methodologies → Genetic algorithms;
Genetic programming; Supervised learning by classifica-
tion;
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1. INTRODUCTION
The Georgia Tach Multiple Objective Evolutionary Pro-

gramming (GTMOEP) framework introduced a new man-
ner of using strongly typed genetic programming for au-
tomatically creating classification or prediction algorithms
from feature data. This was achieved by creating a spe-
cial data object that was passed through a tree structure
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that paired training and testing data together, and wrap-
ping signal processing and machine learning algorithms to
act on these pairs. Using this paradigm, high quality so-
lutions were quickly reached, and human derived solutions
were dominated. [6]

In this abstract, we present techniques used to expand the
capabilities of GTMOEP to operate on non-feature data, in-
cluding a new data structure for maintaining separate fea-
ture and continuous data sources, tiered datasets and sub-
tree caching for faster computation, and seeding with hierar-
chy to decrease start up time and increase solution quality.

2. WORKING WITH CONTINUOUS DATA
There are many examples of genetic programming [2, 3,

5] that work with continuous data, however most do so in a
linear fashion. First, features are constructed or extracted
from continuous data, then they are either fed directly to a
learner or a second layer of optimization is done to evolve
a learner from these features. GTMOEP presents a shift
towards wrapping both steps in to one optimization, where
feature extraction and learning can occur in cycles and build
from each other.

To support a wider set of application problems, the GT-
MOEP framework was modified to use a dual representation
for maintaining features along with continuous data. When
we use the terms continuous data or stream data we are re-
ferring to data where not only the contained information is
important, but also the order in which it appears.

The representation consists of a list of instances (or ob-
servations) each instance contains a feature data object and
a stream data object. This requires modifying all signal
processing functions to consume a parameter to determine
whether they would be acting on the feature data or stream
data directly, or be creating features from the stream data
and adding them to the feature set. Conversely, machine
learning functions in the primitive set operate only on the
feature space in this framework.

3. TIERED DATASETS FOR SPEEDING UP
EVALUATIONS

Some of the challenges in working with machine learn-
ing functions include the memory and processing time re-
quired in order to preform classification or prediction. Both
resources also increase exponentially with the size of the
datasets. It follows then, that evaluating hundreds of thou-
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sands of individuals is an intensive task for even a powerful
cluster of computers. To this end, GTMOEP was designed
to increase the size of the datasets used as an individual
passes through stages. A program can first be tested with a
very small set of data; all the individuals that meet a thresh-
old requirement are analyzed, and the top tier (strong Pareto
strength) are then sent on to the next largest data set.

Individuals are graduated from dataset to dataset as fol-
lows. Evaluation begins on the smallest dataset. Once fit-
nesses are returned, a subpopulation N is to be selected
for transitioning to the next level. Then, using thresholds,
the subpopulation is broken up in to two pieces, specialists
(which are below the threshold in one objective) and well
rounded individuals (which are below the thresholds in mul-
tiple objectives). Each piece contributes a portion of the
subplopulation using SPEA2 selection.

This concept follows the idea of extra-genetic information
in nature, or in other words, knowledge acquired over the
life span of a particular species. This feature of GTMOEP
was developed to support the adult data set problem from
the UCI Machine Learning repository [1]. This problem
presents the challenge of having 48,842 instances of data.
Each instance is comprised of fourteen features: age, work-
class, fnlwgt, education, education-num, marital-status, oc-
cupation, relationship, race, sex, capital-gain, capital-loss,
hours-per-week, and native-country. With a data set of this
size, partitioning to a small and full data set allowed the
ability for individuals to fail fast. This means that the most
computer processing time was spent on individuals that had
already been somewhat proven, rather than on fatal alleles
(genotypes that resulted in poor performance). This is sim-
ilar to the work done by Rohling in his thesis [4]. Rather
than thresholding on time consuming objective functions, we
are thresholding on time consuming and memory intensive
datasets.

In practice, on the adult data set problem, we computed
that out of 30,181 individuals 24,294 were not necessary to
graduate to the larger datasets. At an average computation
time of 258 seconds for an evaluation on the larger data set,
this represents a savings of over 1741 hours of computation
time. By contrast, on the smallest data set, only one percent
of the total number of instances was used, and computation
times averaged only 1.35 seconds. This means that our gain
of approximately 1741 hours came at the expense of only
2.21 computational hours on the redundant computations
required for those 5887 individuals that were graduated.

4. CACHING ML RESULTS
Zutty et al. previously showed that they maintained hashes

of individuals [6]. Building on this, we have enabled GT-
MOEP to also hash results of machine learning training (in
effect, subtrees). This is achieved as follows: before train-
ing a machine learning algorithm, the full input feature data
matrix is hashed along with the learner type and parame-
ters. This hash is used to explain a saved learner state saved
on the filesystem. GTMOEP then checks to see if this hash
has already been written. If it has, the trained machine
learner is read in. Else, after training the machine learner,
the results are written out to disk. This hashing method is
significantly cheaper than retraining a learner on the same
set of features. It is also of benefit because as subtrees are
exchanged in mating, branches persist in multiple individu-
als.

5. STARTING WITH HIERARCHY
In Rohling’s thesis he showed the benefits of seeding a ge-

netic programming optimization with a set of topologies [4],
rather than beginning randomly. Using this seeding, Rohling
was able to converge to better solutions more rapidly. We
have developed a similar paradigm for GTMOEP.

By parameterizing the primitive set of functions, we can
randomly create hierarchies of feature selections, modifica-
tions, aggregations, transforms, and learning. We have had
success with this method of trees of depth four and five.
However, we have found that the deeper the trees the more
challenging this becomes, as there is a higher probability of
randomly introducing an invalid operation in the tree, cre-
ating a fatal allele.

6. CONCLUSIONS
Adding support for continuous data enables GTMOEP to

process new types of prediction and classification problems
such as signal and image processing tasks. This is an im-
portant capability toward our goal of automating the data
scientist, to result in better algorithms and new techniques.

GTMOEP continues to change the paradigm for evolu-
tionary computation where evaluations are significantly more
computationally expensive than the processing required to
produce a population. As such, the ideas presented result in
more throughput of individuals despite any computational
cost required for the techniques themselves.

Future work is required on the concepts presented here to
more rigorously establish benchmarks and speed ups. Addi-
tionally we plan on altering some of these features to make
them more robust to large problems, such as implementing
caching rules for the hashing of subtrees, or smarter seeding
such that with large trees there is still a strong probability
of success.
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