
Principled Evolutionary Algorithm Design and the Kernel
Trick

Fergal Lane
BDS Group

CSIS Department
University of Limerick, Ireland

fergal.lane@ul.ie

R. Muhammad Atif Azad
BDS Group

CSIS Department
University of Limerick, Ireland

atif.azad@ul.ie

Conor Ryan
BDS Group

CSIS Department
University of Limerick, Ireland

conor.ryan@ul.ie

ABSTRACT
We introduce a new approach to the principled design of
evolutionary algorithms (EAs) based on kernel methods. We
demonstrate how kernel functions, which capture useful prob-
lem domain knowledge, can be used to directly construct EA
search operators. We test two kernel search operators on a
suite of four challenging combinatorial optimization problem
domains. These novel kernel search operators exhibit supe-
rior performance to some traditional EA search operators.

Keywords
Kernel methods; search operator design; combinatorial op-
timization

1. INTRODUCTION
EA configuration continues, in practice, to be a largely

empirical affair. Practitioners can often be confronted with
a bewildering array of possible configuration options. Typ-
ically, some subset of configuration possibilities is chosen
and, then, compared and tuned using many EA runs. The
broad approach of EA principled design is to first better un-
derstand the problem domain (PD) being optimized. Then,
insights gained can be potentially used in a more focused,
informed and efficient design process.

Several authors have previously sought to exploit problem
domain structure in EA design (see [3] for a recent broad
overview of work in this area). The most closely related ap-
proach to our work would be Moraglio’s“geometric theory of
EAs” [7] where, once one has a suitable search space metric
for a problem domain, balls and line segments generated by
the associated topology can be used to construct geometric
mutation and crossover operators.

This paper introduces a novel approach to principled EA
design. Our method begins by first finding a kernel function
that matches the inherent statistical characteristics of the
PD at hand. We then use this kernel function, which cap-
tures this PD knowledge, to directly construct EA search
operators.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2909005

2. THE KERNEL TRICK
Algorithms such as linear regression and principal compo-

nent analyis (PCA) principally operate using inner products
in the original representation space and assume an under-
lying linear model for the problem/data being tackled. In
principle, such linear algorithms can be extended to cope
with non-linear problems/data using an explicit transform
Φ : S → V from the original search space S to some (usu-
ally higher dimensional) kernel feature space V where the
original problem is better linearized. This approach means
one has to explicitly calculate inner products for potentially
huge (even infinite dimensional) and cumbersome coordinate
feature vectors

The kernel trick [1] is where one instead uses only a kernel
function k(s, t) (with general form k : S × S → <) that di-
rectly gives the inner product between any two search space
points s and t in some transformed kernel feature space V.
One only implicitly works in these higher dimensional spaces
via cheaply-computed kernel functions. For example, a stan-
dard linear classifier that could not effectively separate data
in the original space might successfully separate these in
some higher dimensional feature space via a kernel; this is
the basis of Support Vector Machine techniques in classifi-
cation.

Kernel functions can also be viewed as similarity functions
that give, for any two search space points, a value indicating
how similar their fitness values are likely to be. Rigorous
evidence-based machine learning techniques can be used to
efficiently learn suitable kernel functions that capture such
PD behaviour [8] (fitting a kernel function based on a sample
of search space points and fitness values from several fitness
functions belonging to the PD).

3. KERNEL OPERATIONS
A kernel function calculates inner products between the

transformed coordinates of search space points in some ker-
nel feature space V. However, several other basic operations
in the kernel feature space: norms, distances and squared
distances, can also be expressed in terms of inner products.
Table 1 lists how to calculate these using kernel functions.

However, with some basic matrix manipulation, even more
complex operations in V (involving linear combinations, hy-
perplanes and spanning sets) are possible. We can construct
orthonormal coordinate systems for such hyperplanes and
spanning sets, and also calculate the distances of arbitrary
points to these sets. Suppose P = {p1, ...pn} , pi ∈ S is a
set of n parent points. For search operator design, two par-
ticularly useful constructs are the parent spanning set SP

149



Table 1: Basic Kernel Operations

Operation Symbol
Kernel Function
Implementation

Inner Product 〈s, t〉 k(s, t)

Norm ‖ s ‖
√
k(s, s)

Squared distance d2(s, t) k(s, s) + k(t, t)− 2k(s, t)

Distance d(s, t)
√
k(s, s) + k(t, t)− 2k(s, t)

(the set of all possible linear combinations of the parent set
coordinates in V) and the parent hyperplane HP (the hyper-
plane that intersects the n parent points). Suppose KP,P is
the n× n matrix of kernel inner products between the par-
ents: (KP,P )i,j = k(pi, pj), and KP,c is the n-dimensional
column vector of their inner products with some arbitrary

point c ∈ S: (KP,c)i = k(pi, c), then [c]E = K
− 1

2
P,PKP,c gives

an orthonormal n-dimensional coordinate system ΨE for SP .
We can use this to find the kernel distance between any two
points within SP . The kernel distance from any point c to
its closest equivalent in SP can be found using the formula

d(c,Sp) =
√
k(c, c)−KT

P,cK
−1
P,PKP,c. Other similar formu-

las can be derived (as well as equivalent ones for HP ).

4. KERNEL SEARCH OPERATORS
Using such techniques, we implemented two kernel search

operators.
Our Kernel Hyperplane (KH) operator was based on the

kernel distance d(c, HP ) between a child point c and the
parent hyperplane HP in V. This had the following search
operator density form:

PKH(c) ∝ exp

(
−d(c,HP )

σ

)
, σ > 0 (1)

The σ parameter determines how severely departures from
the parent hyperplane within V are penalized.

Our Kernel Simplex (KS) operator was based on the ker-
nel distance d(c,4P ) between a child point c and the parent
simplex 4P in V. This has a similar search operator den-
sity form to equation 1 (except distance to 4P rather than
HP was used). These two kernel search operators combined
both crossover and mutation in a single operator. In our
experiments we tested the two-parent (n = 2) case.

5. EXPERIMENTS AND RESULTS
Four well-known combinatorial optimization PDs with bit

string search spaces were used: QUBO [4], CUBO (Cubic
Unconstrained Binary Optimization) [5], NK-Landscapes [2]
(with a “random neighbourhood” model without replace-
ment), and K-Uniform MAX-SAT [6] (with 20n random
clauses). Three different values for n, the bit string length,
were used in simulations: n = 25, 50 and 100. One attrac-
tion of the PDs chosen for this suite was their actual kernel
functions could be directly calculated from first principles.

We used EAs with a population size of 100 running for 100
generations. Selection was carried out using tournament se-
lection (with size 2). We used an EA with uniform crossover
and bit flip mutation (UX/BF) as a baseline comparison (a
crossover rate of 0.6 and a bit flip rate of 2

n
was found to

gave the best all-round test suite performance). Batches of

Table 2: Search Operator Performances (Mean Best
Run Fitness)

Search Operator
Problem Domain KS KH UX/BF

QUBO 7.33± 0.03 7.28± 0.05 6.79± 0.04
CUBO 7.30± 0.04 7.27± 0.04 6.78± 0.04

NK (K=5) 7.16± 0.05 7.21± 0.05 6.65± 0.04
MAX-SAT

(K=3)
6.63± 0.04 6.74± 0.04 6.36± 0.03

Mean Test Suite
Performance

7.11± 0.02 7.13± 0.02 6.64± 0.02

100 runs were used to produce all experimental results given
here.

A setting of σ = 1.75
n

produced the best average test suite
performances for the KS and KH operators. The relative
performances of these search operators can be seen in Table
2. The mean performance advantage for the KS operator
over UX/BF was 7% and, for the KH operator over UX/BF
was 7.4% when averaged over the entire test suite (over all
PDs and and problem bit string lengths).

6. CONCLUSIONS
These preliminary results show that this novel kernel-

based EA principled design approach is worthy of further
study. These kernel operators can be extended to exploit
parent fitness information; scaling up to use multiple parents
should also be straightforward. Many other kernel search op-
erator forms are possible. Other EA components should also
be amenable to kernelization, for example, diversity preser-
vation mechanisms such as sharing. Another potentially
promising avenue of research is the application of the kernel
trick to Estimation of Distribution Algorithms (EDAs).

7. REFERENCES
[1] A. Aizerman, E. M. Braverman, and L. I. Rozoner.

Theoretical foundations of the potential function
method in pattern recognition learning. Automation
and remote control, 25:821–837, 1964.

[2] L Altenberg. NK fitness landscapes. In Handbook of
evolutionary computation, chapter B2.7.2. Oxford
University Press, 1997.

[3] Y. Borenstein and A. Moraglio. Theory and Principled
Methods for the Design of Metaheuristics. Springer,
2014.

[4] E. Boros, P. L. Hammer, and G. Tavares. Local search
heuristics for Quadratic Unconstrained Binary
Optimization (QUBO). Journal of Heuristics,
13(2):99–132, 2007.

[5] F. Glover, J.-K. Hao, et al. Polynomial unconstrained
binary optimisation – part 2. International Journal of
Metaheuristics, 1(4):317–354, 2011.

[6] H. H. Hoos and T. Stützle. Stochastic local search:
Foundations & applications. Elsevier, 2004.

[7] A. Moraglio and R. Poli. Topological interpretation of
crossover. In GECCO 2004, pages 1377–1388. Springer,
2004.

[8] C. E. Rasmussen and C. K. I. Williams. Gaussian
processes for machine learning. 2006. The MIT Press,
2006.

150




