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ABSTRACT
Complex networks are used to model a wide range of sys-
tems in nature and society. One area of importance is the
ability to model network formation, which has lead to the
development of many different algorithms (network gener-
ators) capable of synthesizing networks with very specific
structural characteristics (e.g., degree distribution, average
path length). In this paper, we propose an approach based
on action-based networks, which have the potential to gen-
erate more realistic network structures than existing tech-
niques. Tests for robustness of the proposed method to infer
other network structural characteristics not included in the
set of objectives being optimized show the efficacy of the
approach.

1. INTRODUCTION
Complex networks can be used to model complex real

world systems using sets of nodes and edges that represent
elements and their interactions [4]. A question of fundamen-
tal importance is: can we generate synthetic networks that
are statistically representative of real networks? The an-
swer may come in the form of modeling the underlying pro-
cesses via an algorithm that creates networks [1]. These al-
gorithms, called network generators, are typically stochastic
and through repeated execution, produce a set of networks
with specific global structural properties, but are otherwise
random [4]. In this paper we introduce a new action-based
approach for network generation and examine its ability to
reproduce existing network models by observing only a sin-
gle target network structure. We then use an optimization-
based approach to learn the probabilistic model to synthesize
networks similar to the target network. Results show that
most of them can be interpreted using a simple homogeneous
model of the action-based approach.

2. METHODOLOGY
The approach described here allows each node to proba-

bilistically choose from a set of actions to connect to other
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nodes. Intuitively, action-based network generators (ABNG)
model network formation as nodes taking individual actions
(decisions) to create a global structure. We define A =
{a1, · · · , ak} as the set of k node actions and pi(A) as a prob-
ability distribution over actions for node vi. pi(A) reflects
how a node vi weighs different actions for forming connec-
tions. We can form a n×k row stochastic matrix P with the
following properties: pij ≥ 0,

∑k
j=1 pij = 1,∀i = 1, · · · , n.

If different nodes weigh actions similarly, then P will have
q ≤ n distinct rows. We define the Action Matrix, M : q×k,
as a condensed form representation of P such that M con-
tains all the distinct rows of P and p̄ is a probability vector
of length q, which contains the probability of occurrence of
the corresponding rows in P.
An action for a node vi builds undirected edges, all of which
have vi as one endpoint. An action provides us with a well-
defined strategy for selecting the other end vj of the edge
(vi, vj). Every action for node vi returns a vector p̂i of length
n, where the jth element p̂ji is the probability corresponding
to the insertion of an edge between vi and vj by node vi.
So, for network G = {V,E}:

A(V |i) : vi → p̂ji 0 ≤ p̂ji ≤ 1 ∀j = 1, · · · , n (1)

where edge (vi, vj) is inserted into G by vi w.p. p̂ji .
In the current implementation of ABNG, we use the fol-
lowing eight actions: Preferential attachment based on de-
gree, neighbor degree, PageRank and betweenness; connect-
ing to a second neighbor, node similarity based on Inverse
log-weighted and Jaccard similarity and an action adding
no new edge. Using these actions and corresponding Action
Matrix, networks (G) can be generated by using the follow-
ing algorithm:

• Visit node vi, choose pi(A) from the rows of M and
select an action, ad with probability pid.

• The action outputs a vector p̂i of length n, where the
jth element p̂ji is the probability corresponding to the
insertion of an edge between vi and vj by node vi.

• An edge is inserted in G based on p̂i until the number
of edges in G is same as the target.

While networks have numerous structural properties (e.g.,
average path length, transitivity, degree distribution, mod-
ularity and so on), there is no universally accepted subset of
measures deemed sufficient to accurately compare two net-
works for dissimilarity [4]. One way of evaluating fitness
of the generated networks w.r.t the target as proposed in
[3] is to synthesize a set of networks to calculate a sum-
mary statistic for the fitness of the generator. Results in
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Figure 1

Figure 2: (a) Results obtained from the evolved models for the different networks considered here. Network properties other
than those used for optimization are also shown. The plots show KS-test d-values with the outer pentagon showing value of
1. The lower the value, better is the generated network. Each plot shows 20 different generations. (b) Network Inference
using M200 for n = 500, M200 are on the left and M500 on the right. The plots show KS-test d-values which turn out be
very similar for the actual and the inferred networks.

[3] indicated that of the examined centrality measures, the
degree distribution, betweenness centrality, and PageRank
were the most effective for quantifying the (dis)similarity of
networks generated by different network models, and will
be used here. However, the framework allows for any user-
desired measures.
We use Pareto Simulated Annealing [2] to find the action
matrix M that optimizes the fitness of generated networks.
We start with a 1 × k action matrix and assume that all
nodes are homogeneous w.r.t. to how they form connec-
tions. Additional rows are added to M dynamically.

3. EXPERIMENTS AND RESULTS
Simulation experiments were performed with six synthetic

network generators each of which use different criteria for
creating networks. The networks used for experimentation
were simple (no loops and multi-edges), undirected and un-
weighted. They were selected for both their historical signifi-
cance, and because they each exhibit distinct global network
properties observed in real networks. The results presented
here only include Small World and Barabási–Albert models.
A few real world networks were also considered for testing
ABNG, results for the network of word adjacencies [5] are
shown here. Simulation experiments were run for the six net-
work generation models with n = 100 nodes and m ≈ 500
edges. Networks with this size were chosen because they are
large enough to reflect structural properties in the target
network while not being too large for testing purposes.
Solutions obtained for the Small World and Barabási–Albert
models consisted of a 1 × k action matrix M. It must be
kept in mind that due to the stochastic nature of ABNG
algorithm, networks generated with an action matrix are
not isomorphic as is evident from Figure 1. An experi-
ment was preformed to validate the current model for a
growing network using the Barabási–Albert model. A net-
work with n = 100 and m ≈ 500 was allowed to grow
to networks with n = 200, 500 using the Barabási–Albert
model. Action matrices M100,M200,M500 were obtained
from evolved ABNG solutions. Next, M200 was used to
generate the networks with n = 100, 500. The networks
generated using M200 were statistically as good as the ones
generated using M100 and M500 respectively. Figure 1(b)

shows equivalence of results between the actual and the in-
ferred network for 100 generated networks. Another obser-
vation was that the matrices M200 and M500 gave similar
weights to actions.

4. CONCLUSIONS
In this paper we defined an action-based approach for gen-

erating complex networks. We have shown the feasibility
of this approach to produce complex structure of networks
exhibiting different properties by using a variety of target
networks. The evolved models also performed well, with re-
spect to the fitness measures, when predicting the growth of
networks generated by the target algorithms. Multiple runs
of the optimization approach on the same network were ob-
served to converge to similar solutions.
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