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ABSTRACT

We investigate the covariance matrix when constructed by
Evolution Strategies (ESs) operating with the selection op-
erator alone. We model continuous generation of candidate
solutions about quadratic basins of attraction, with deter-
ministic selection of the decision vectors that minimize the
objective function values. Our goal is to rigorously show
that accumulation of winning individuals carries the poten-
tial to reveal valuable information about the search land-
scape. We first show that the statistically-constructed co-
variance matrix over such winning decision vectors shares
the same eigenvectors with the Hessian matrix about the op-
timum. We then provide an analytic approximation of this
covariance matrix for a non-elitist multi-child (1, λ)-strategy,
which holds for a large population size λ.
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1. STATISTICAL LANDSCAPE LEARNING
We outline the research question that we target:

What is the relation between the statistically-
learned covariance matrix and the landscape Hes-
sian [2] if a single winner is selected in each iter-
ation assuming generated samples that follow an
isotropic Gaussian (no adaptation)?

Let J : Rn → R denote the objective function subject to
minimization. We assume that J is minimized at the loca-
tion ~x∗, which is assumed for simplicity to be the origin. The
objective function may be Taylor-expanded about the opti-
mum. We model the n-dimensional basin of attraction about
~x∗ by means of a quadratic approximation. We assume that
this expansion is precise J (~x− ~x∗) = J (~x) = ~xT · H · ~x,
with H being the landscape Hessian about the optimum.
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The canonical non-elitist single-parent ES search process
operates in the following manner: The ES generates λ search-
points ~x1, . . . , ~xλ in each iteration, based upon Gaussian
sampling with respect to the given search-point. We are es-
pecially concerned with the canonical operation, which adds

a normally distributed mutation ~z ∼ N
(

~0, I
)

. Following

the evaluation of those λ search points with respect to J (~x),
the best (minimal) individual is selected and recorded as
~y = argmin{J(~xi)}. Finally, let ω denote the winning ob-
jective function value, ω = J(~y) = min {J1, J2, . . . , Jλ},
where Ji = J(~xi). We distinguish between the opti-

mization phase, which aims to arrive at the optimum

and is not discussed here, to the statistical learning

of the basin – which lies in the focus of this study.

The length of a mutation vector,
√
~zT~z, obeys the so-

called χ-distribution with n degrees of freedom. We assume
a quadratic basin of attraction, where the Hessian matrix is
positive definite with the following eigendecomposition form,

H = UDU−1 D = diag [∆1, . . . ,∆n] , (1)

with {∆i}ni=1 being the eigenvalues. The random variable
ψ = J(~z) obeys a generalized χ2-distribution, whose CDF
is known to follow an approximation,

Fχ2 (ψ) =
Υη

Γ (η)

∫ ψ

0

tη−1 exp (−Υt) dt, (2)

with Υ and η accounting for matching the first two moments

of ~zTH~z: Υ = 1
2

∑n
i=1 ∆i∑
n
i=1

∆2
i

, η = 1
2

(
∑n

i=1 ∆i)
2

∑
n
i=1

∆2
i

.

We summarize our notation: The random vector ~z is a
normal Gaussian mutation and ψ = J(~z). The random vec-
tors ~x1, . . . , ~xλ are λ independent copies of ~z, and Ji = J(~xi).
The winner is ~y, and ω = J(~y). The matrix H is the Hessian
about the optimum ~x∗, and C is the covariance matrix of ~y.

2. THE COVARIANCE MATRIX
Having the origin set at the parent search-point, which is

located at the optimum, the covariance elements are thus
defined as:

Cij =

∫

xixjPDF~y (~x) d~x , (3)

where PDF~y (~x) is an n-dimensional density function charac-
terizing the winning decision variables about the optimum.
In the decision-space perspective, the density function of a
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winning vector of decision variables ~y is related to the den-
sity of the winning function value ω as follows:

PDF~y (~x) = PDFω (J (~x)) · PDF~z (~x)

PDFψ (J (~x))
, (4)

with PDF~z denoting the density function for generating an in-
dividual, and PDFψ denoting the density function of the ob-
jective function values (derived from Eq. (2)). A brief justifi-
cation follows. The density functions satisfy the conditional
relation: PDF~y (~x) = PDFω (J (~x)) · PDF~y|ω (~x | J (~x)). Now

consider the distribution of [~y;ω] on R
n+1. The density of ~y

conditioned on the value of J (~y) is that of a normal Gaus-
sian subject to this conditioning, since we may sample [~y;ω]
by the following construction: First sample {J1, . . . , Jλ} ac-
cording to PDFψ independently. Then sample {~x1, . . . , ~xλ}
conditioned on the values of J1, . . . , Jλ independently. Fi-
nally, J may be set to Jℓ = ω that is minimal and ~y set to
the respective ~xℓ. Overall, the winning vector ~y conditioned
on the winning value ω is generated in the same manner as
a normally-distributed ~z conditioned on ψ.

Theorem 1. The covariance matrix and the Hessian are

commuting matrices when the objective function follows

the quadratic approximation.

Proof. Given the density function in Eq. (4), the objec-
tive function is assumed to satisfy J (~x) = ~xT ·H ·~x, and the
covariance matrix reads:

Cij =

∫

xixjPDFω

(

~xT · H · ~x
)

· PDF~z (~x)

PDFψ (~xT · H · ~x)d~x. (5)

Consider the orthogonal matrix U , which diagonalizes H into
D and possesses a determinant of value 1 (as in Eq. (1) ):

~ϑ = U−1~x, d~ϑ = d~x.

We target the integral Iij =
(

U−1CU
)

ij
and apply a change

of variables into ~ϑ (after changing order of summations):

Iij =
1

√

(2π)n

∫ +∞

−∞

∫ +∞

−∞

· · ·
∫ +∞

−∞

ϑiϑj exp

(

−1

2
~ϑT ~ϑ

)

×

×
PDFω

(

~ϑT · D · ~ϑ
)

PDFψ

(

~ϑT · D · ~ϑ
)dϑ1dϑ2 · · · dϑn.

(6)
Iij vanishes for any i 6= j due to symmetry considerations:
the overall integrand is an odd function, because all the
terms are even functions, except for ϑj , ϑi when they differ.
Therefore, the integration over the entire domain yields zero.
Hence, I is the diagonalized form of C, with U holding the
eigenvectors. C is thus diagonalized by the same eigenvec-
tors as H, and therefore, by definition, they are commuting

matrices, as claimed.

3. ANALYTICAL APPROXIMATION
We provide an approximation for PDFω (J (~x)) and conse-

quently for PDF~y (~x) to calculate the covariance matrix using
Eq. (3). We consider here a non-elitist multi-child selection
with λ offspring. The distribution function of the winning
event amongst λ candidates and its derived density are:

CDFω (ψ) = Pr {ω ≤ ψ} = 1− (1− CDFψ (ψ))λ

PDFω (ψ) = λ · (1− CDFψ (ψ))λ−1 · PDFψ (ψ) .
(7)

Upon substituting the explicit forms into CDFψ and PDFψ

using Eq. (2), the desired density function PDFω (J (~x)) is
obtained, however not in a closed form.

We treat the derived winners’ distribution for large sample
sizes, i.e., when the population size tends to infinity [3], and
adhere to the Fisher-Tippett theorem. We consider mini-

mal generalized extreme value distributions (GEVDmin) [1],
and are able to show that under the GEVD approxi-

mation, λ → ∞, upon normalizing the random variable to
ψ̃ = (ω − b∗λ) /a

∗
λ and using the tail index n

2
, the CDF and

PDF forms for the single winning event read:

CDF
GEVD
ω

(

ψ̃
)

= 1− exp
(

−ψ̃
n
2

)

PDF
GEVD
ω

(

ψ̃
)

= n
2
ψ̃

n
2
−1 exp

(

−ψ̃
n
2

) . (8)

GEVD convergence is ensured by the constants a∗
λ = F−1

χ2

(

1
λ

)

,

b∗λ = 0. J is assumed to satisfy J (~x) = ~xT · H · ~x, and must

be normalized only for PDFω by means of J̃(~x) ≡ (J(~x)) /a∗
λ;

then Eq. (3) may be rewritten using Eq. (4):

Cij =

∫ +∞

−∞

· · ·
∫ +∞

−∞

NCxixj

(

~xTH~x
)n

2
−η

×

× exp

[

Υ~xTH~x−
(

~xT H~x
a∗

λ

)n
2 − 1

2
~xT~x

]

dx1dx2 · · · dxn.

(9)

with a normalizing constant NC = nΓ(η)

2Υη(a∗

λ)
n
2

−1
√

(2π)n
.

For the isotropic case, H = h0I, the integration is straight-
forward (η = n

2
, Υ = 1

2h0
) – the attained covariance is pro-

portional to the inverse Hessian, multiplied by a factor:

C(H=h0I) =
Γ(n

2
) · Γ

(

1 + 2
n

)

· c (n) · a∗λ
2πn/2

· H−1, (10)

wherein

c (n) =

{

πm

m!
n = 2m

2m+1πm

1·3·5···(2m+1)
n = 2m+ 1

. (11)

For the general case of any positive-definite Hessian H, the
integral in Eq. (9) has an unknown closed form.

The reported results herein have been numerically

validated to a satisfactory level for different land-

scape Hessians at various dimensions. The validation
comprised the commuting property devised by Theorem 1,
the accuracy of the approximated distributions described at
Eqs. (2) and (8), and the approximated integral of Eq. (9),
which was successfully corroborated for the isotropic case at
a spectrum of dimensions and for the general case at n = 3.

Possible directions for future research include exploration
of this model subject to non-isotropic Gaussian mutations,
and its investigation for a multi-parent (µ, λ)-strategy.
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