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1. INTRODUCTION
Stochastic search algorithms [1, 2] are black box optimizers of

an objective function R(θ) : Rn → R. The goal is to find one
or more parameter vectors θ ∈ Rn which have the highest possi-
ble objective value. The only accessible information on R(θ) are
(possibly noisy) evaluations {R[k]}k=1...N of parameter vectors
{θ[k]}k=1...N , where k is the index of the sample and N is num-
ber of samples. Stochastic search algorithms typically maintain a
search distribution π(θ) over the parameter space θ of the objec-
tive functionR(θ). The search distribution π(θ) is implemented as
a multivariate Gaussian distribution, i.e., π(θ) = N (θ|µ,Σ). In
each iteration, the search distribution π(θ) is used to create samples
θ[k] of the parameter vector θ. Subsequently, the (possibly noisy)
evaluation R[k] of θ[k] is obtained by querying the objective func-
tion. Subsequently using the samples {θ[k], R[k]}k=1...N , a new
stochastic search distribution is computed. Information-theoretic
search distribution updates [3] bound the Kullback Leibler diver-
gence between two subsequent search distributions. Using a KL-
bound for the update of the search distribution is a common ap-
proach in stochastic search. However, such information theoretic
bounds could so far only be approximately applied either by using
Taylor-expansions of the KL-divergence resulting in natural evo-
lutionary strategies (NES) [2], or sample-based approximations,
resulting in the relative entropy policy search (REPS) [3] algo-
rithm. In this paper, we present a novel stochastic search algorithm
which is called MOdel-based Relative-Entropy stochastic search
(MORE). Our algorithm bounds the KL divergence of the new and
old search distribution in closed form. In order to do so, we lo-
cally learn a simple, quadratic surrogate of the objective function.
The quadratic surrogate allows us to compute the new search dis-
tribution analytically where the KL divergence of the new and old
distribution is bounded. Therefore, we only exploit the surrogate
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model locally which prevents the algorithm to be misled by inac-
curate optima introduced by an inaccurate surrogate model. In ad-
dition to solving the search distribution update in closed form, we
also upper-bound the entropy of the new search distribution to en-
sure that exploration is sustained in the search distribution through-
out the learning progress, and, hence, premature convergence is
avoided. We provide a comparison of stochastic search algorithms.

2. MODEL-BASED RELATIVE ENTROPY
STOCHASTIC SEARCH

Similar as in [3], we can formulate an optimization problem to
obtain a new search distribution that maximizes the expected ob-
jective value while upper-bounding the KL-divergence and lower-
bounding the entropy of the distribution, i.e.,

max
π

∫
π(θ)Rθdθ (1)

s.t. KL
(
π(θ)||q(θ)

)
≤ ε, H(π) ≥ β, 1 =

∫
π(θ)dθ.

where Rθ denotes the expected objective when evaluating param-
eter vector θ. The term H(π) = −

∫
π(θ) log π(θ)dθ denotes

the entropy of the distribution π and q(θ) is the old distribution.
The parameters ε and β are user-specified parameters to control the
exploration-exploitation trade-off of the algorithm. We can obtain
a closed form solution for π(θ) by optimizing the Lagrangian for
the optimization problem given above. This solution is given as

π(θ) ∝ q(θ)η/(η+ω) exp
(
Rθ

η + ω

)
, (2)

where η and ω are the Lagrangian multipliers. The optimal value
for η and ω can be obtained by minimizing the convex dual function
g(η, ω) such that η > 0 and ω > 0. The dual function g(η, ω) is
given by

g(η, ω) = ηε−ωβ+(η+ω) log

(∫
q(θ)

η
η+ω exp

(
Rθ

η + ω

)
dθ

)
.

(3)
As we are dealing with continuous distributions, the entropy can
also be negative. We specify β such that the relative difference of
H(π) to a minimum exploration policy H(π0) is decreased for a
certain percentage, i.e., we change the entropy constraint to

H(π)−H(π0) ≥ γ(H(q)−H(π0))⇒ β = γ(H(q)−H(π0))+H(π0).

153



× 1500
0 1 2 3 4 5 6 7 8 9

MORE
REPS
PoWER
xNES
CMA-ES

Av
er

ag
e 

Re
tu

rn

Episodes

-10y

-4
-3
-2
-1
0
1
2
3
4
5
6

(a) Rosenbrock
Episodes

Av
er

ag
e 

Re
tu

rn

-10y

0 0.5 1 1.5 2 2.5 3
4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

× 104

MORE
REPS
PoWER
xNES
CMA-ES

(b) Rastrigin
Episodes

Av
er

ag
e 

Re
tu

rn

× 104

-10y

0 1 2 3 4 5 6 7
6.00
5.00
4.00
3.00
2.00
1.00

-0.00
-1.00
-2.00

MORE
REPS
PoWER
xNES
CMA-ES

(c) Noisy Function

Figure 1: Comparison of stochastic search methods for optimizing (a) Rosenbrock function and (b) Rastrigin function. (c) Comparison for a noisy
objective function. All results show that MORE performs favourably.

We set minimum entropy H(π0) of search distribution to a small
enough value like −75.

2.1 Analytic Solution of the Dual-Function and
the Search Distribution

Using a quadratic surrogate model of the objective function, we
can compute the integrals in the dual function analytically, and,
hence, we can satisfy the introduced bounds exactly in the MORE
framework. At the same time, we take advantage of surrogate mod-
els such as a smoothed estimate in the case of noisy objective func-
tions. We will assume that we are given a quadratic surrogate model
Rθ ≈ θTRθ + θTr + r0 of the objective functionRθ which we
will learn from data 1. Moreover, the search distribution is Gaus-
sian, i.e., q(θ) = N (θ|b,Q). In this case the integrals in the
dual function given in Equation 3 can be solved in closed form.
The integral inside the log-term in Equation (3) now represents an
integral over an un-normalized Gaussian distribution. Hence, the
integral evaluates to the inverse of the normalization factor of the
corresponding Gaussian. The dual can be written as

g(η, ω) = ηε− βω +
1

2

(
fTFf − ηbTQ−1b− η log |2πQ|

+ (η + ω) log |2π(η + ω)F |
(4)

with F = (ηQ−1 − 2R)−1 and f = ηQ−1b + r. Hence, the
dual function g(η, ω) can be efficiently evaluated by matrix inver-
sions and matrix products. Note that, for a large enough value
of η, the matrix F will be positive definite and hence invertible
even if R is not. In our optimization, we always restrict the η
values such that F stays positive definite. Nevertheless, we could
always find the η value with the correct KL-divergence. We can
also obtain the update rule for the new policy π(θ). From Equa-
tion (2), we know that the new policy is the geometric average of
the Gaussian sampling distribution q(θ) and a squared exponen-
tial given by the exponentially transformed surrogate. After re-
arranging terms and completing the square, the new policy can be
written as π(θ) = N (θ|Ff ,F (η + ω)), where F , f are given in
the previous section. objective function.

1In order to learn the local quadratic surrogate, we can use lin-
ear regression to fit a function of the form f(θ) = φ(θ)β, where
φ(θ) is a feature function that returns a bias term, all linear and all
quadratic terms of θ.

3. EXPERIMENTS
We compare MORE with state of the art methods in stochastic

search and policy search such as CMA-ES [1], NES [2], PoWER
[4] and episodic REPS [3]. We use standard optimization test func-
tions. We chose Rosenbrock function f(x) =

∑n−1
i=1 [100(xi+1 −

x2i )
2+(1−xi)2], and a multi-modal function which is known as the

Rastgirin function f(x) = 10n +
∑n
i=1[x

2
i − 10 cos(2πxi)]. All

these functions have a global minimum equal f(x) = 0. We use a
15 dimensional version of these functions. In our experiments, the
mean of the initial distributions has been chosen randomly.

Algorithmic Comparison. We compared our algorithm against
CMA-ES, NES, PoWER and REPS. In each iteration, we gener-
ated 15 new samples 2. For MORE, REPS and PoWER, we always
keep the last L = 150 samples, while for NES and CMA-ES only
the 15 current samples are kept3. As we can see in the Figure 1,
MORE performs favourably in terms of both the learning speed
and the final performance. However, in terms of the computation
time, MORE was slower than the other algorithms. Yet, MORE
was sufficiently fast as one policy update took less than 1s.

Performance on a Noisy Function. We also conducted an ex-
periment on optimizing the Sphere function where we add multi-
plicative noise to the reward samples, i.e., y = f(x) + ε|f(x)|,
where ε ∼ N (0, 1.0) and f(x) = xMx with a randomly chosen
M matrix. Figure 1(c) shows that MORE successfully smooths out
the noise and converges, while other methods diverge.
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