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ABSTRACT

Regular expressions are systematically used in a number of
different application domains. Writing a regular expression
for solving a specific task is usually quite difficult, requiring
significant technical skills and creativity. We have devel-
oped a tool based on Genetic Programming capable of con-
structing regular expressions for text extraction automati-
cally, based on examples of the text to be extracted.

We have recently demonstrated that our tool is human-
competitive in terms of both accuracy of the regular expres-
sions and time required for their construction. We base this
claim on a large-scale experiment involving more than 1700
users on 10 text extraction tasks of realistic complexity. The
F-measure of the expressions constructed by our tool was
almost always higher than the average F-measure of the ex-
pressions constructed by each of the three categories of users
involved in our experiment (Novice, Intermediate, Experi-
enced). The time required by our tool was almost always
smaller than the average time required by each of the three
categories of users. The experiment is described in full de-
tail in “Can a machine replace humans? A case study. IEEE
Intelligent Systems, 2016 .
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1. INTRODUCTION

Regular expressions are systematically used in a number of
different application domains. Writing a regular expression
is often a complex endeavor requiring significant technical
skills and creativity. Along the years, a wealth of research
efforts have considered the problem of constructing a reg-
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ular expression automatically based on examples of the de-
sired behavior. This problem may be cast in several ways,
depending on the intended usage of the regular expression
and on the nature of the input data (a systematic literature
analysis can be found in [6, 5]). The intended usage may
be either binary classification of input items or extraction of
chunks from a (possibly very long) input item. In nearly all
efforts the constructed expression is expected to generalize
a pattern from the available examples, although there have
also been proposals aimed at binary classification of input
items in two predefined lists, without any generalization re-
quirement [3]. Concerning the nature of input data, there
have been proposals focussing on input items expressed in a
formal language, on input items consisting of text lines, on
input items consisting of an unstructured text stream.

In our multi-year research activity on this topic we have
developed several proposals based on Genetic Programming
(GP) for automatic construction of regular expressions for
text extraction from an unstructured stream. We represent a
candidate solution (regular expression) as an abstract syn-
tax tree assembled with the regular expression constructs
and we evolve a population of candidate solutions with a
multiobjective optimization algorithm in which the fitness
of each candidate solution quantifies its accuracy on the
available examples (to be maximized) and its length (to be
minimized).

Our activity may be summarized in a sort of two epochs:
a first tool which improved over the earlier state-of-the-
art substantially, demonstrating the ability to address tasks
of realistic complexity effectively [1, 2]; a second tool [6],
which improved the first tool from a number of points of
views, including support for the OR operator based on a
form of separate-and-conquer search strategy [4], support
for a broader set of regular expression constructs capable of
addressing context-dependent extractions, a more sophisti-
cated fitness definition delivering better F-measure and ca-
pable of supporting potentially unbounded input items.

We have recently demonstrated that our tool is human-
competitive in terms of both quality of solutions and time
required for their construction. We base this claim on a
large-scale experiment involving more than 1700 users on 10
text extraction tasks of realistic complexity. The experiment
is described in full detail in [5].



We developed a web application containing a suite of ex-
traction tasks and challenged users to test their skills with a
Reddit post®. Each task consisted of a piece of unstructured
text annotated with the portions to be extracted (unan-
notated portions were not to be extracted)®?. The anno-
tated portions of a task described a certain task-specific
pattern: URLs (in two datasets of different nature), phone
numbers, HTML href attributes, IP addresses, MAC ad-
dresses, HTML headings, HTML heading content (i.e., ex-
cluding the delimiting HTML tags), author names in bibtex
entries, name of lead author in bibliographic lists.

FEach user was asked to self-classify his proficiency in reg-
ular expressions, either Novice, or Intermediate, or Experi-
enced. We measured the time spent by each user on each
task and assessed the F-measure of each constructed expres-
sion on a separate testing set. Next, we executed our tool
on the very same tasks and the results were as follows.

e For each task (except for one), the time spent by our
tool for constructing a regular expression was much
smaller than the average time required by each cate-
gory of users.

The only task in which our tool required more time
than human operators was HTML heading content.
However, on this task our tool delivered significantly
better F-measure than all the three categories of hu-
man operators.

For each task (except for one), the F-measure of the
regular expression constructed by our tool was higher
than the average F-measure obtained by each category
of users.

The only task in which our tool delivered smaller (and
unsatisfactory) F-measure was extraction of phone num-
bers. The reason is because the training data did not
describe adequately text that looks like a phone num-
ber but is not a phone number. Humans were able to
infer the general pattern appropriately from the avail-
able examples while our tool was not. With a larger
training set, though, our tool was able to obtain F-
measure comparable to human operators or better.

Our work is significant, we believe, for at least two reasons.
First, there is no other tool for automatic construction of
regular expressions capable of delivering human-competitive
performance on tasks of realistic complexity. Second, it
demonstrates the power of GP on a difficult synthesis prob-
lem, requiring technical skills and creativity.

Our recent reference work describing the internals of the
tool in full detail includes an experimental comparison to
other methods for learning of syntactical patterns that are
not specified as a regular expression [6]. Specifically, a method
for learning deterministic finite automata [8] and a method
included in Windows Powershell for synthesizing programs
in a specialized data extraction language [7]. The compari-
son demonstrates a clear superiority of our approach, on the
text extraction tasks considered in our analysis (method [7]
can address multifield extraction tasks, i.e., extraction of

"https://www.reddit.com/r/programming/comments/
3eblji/how_good_are_you_in_writing _regex_challange/

2 A plain and concise description of the web app can be found
at  http://www.i-programmer.info/news/204-challenges/
9586-machine-learning-labs-regular-expression-game.html
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multiple heterogenous patterns; our tool can only address
those tasks as multiple, independent tasks).

The sources of our tool are publicly available on GitHub
and a prototype is available online®.
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