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ABSTRACT
We provide a summary of our real-world experiments with
a swarm of aquatic surface robots with evolved control.
Robotic control was synthesized in simulation, using of-
fline evolutionary robotics techniques, and then successfully
transferred to a real swarm. Our study presents one of the
first demonstrations of evolved control in a swarm robotics
system outside of controlled laboratory conditions. Original
publication: M. Duarte, V. Costa, J. Gomes, T. Rodrigues,
F. Silva, S. M. Oliveira, and A. L. Christensen. Evolution
of collective behaviors for a real swarm of aquatic surface
robots. PLoS ONE, 11(3):e0151834, 2016.

1. INTRODUCTION
Swarm robotics systems (SRS) are a promising approach

to collective robotics, in which large groups of relatively sim-
ple and autonomous robots display collectively intelligent
behavior [2]. Control in a SRS is decentralized, meaning
that each individual robot operates based on local obser-
vations and in coordination with neighboring robots. Due
to their inherent properties, namely robustness, flexibility
and scalability, SRS have an enormous potential in several
real-world domains, such as search and rescue, exploration,
surveillance, and cleanup [1,2].

One of the key challenges in SRS is the synthesis of be-
havioral control. In this respect, evolutionary robotics (ER)
techniques have been widely studied as an alternative to
manual control design, due to their capacity to automati-
cally synthesize self-organized control based only on a spec-
ification of a high-level performance metric [4]. Despite the
potential of SRS with evolved control for real-world tasks,
previous experiments presented in the literature have been
confined to laboratory environments such as enclosed arenas,
in which the relevant experimental conditions can be con-
trolled [2]. In this paper, we summarize recent studies that
have shown, for the first time, a SRS system with evolved,
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Figure 1: Ten robots performing a homing task.

decentralized control carrying out proof-of-concept tasks in
real-world environments (see Fig. 1).

2. EVOLUTION OF SWARM BEHAVIORS
FOR AQUATIC ROBOTS

In [5], we studied the evolution and transfer of swarm
robotic behavior in a real-world maritime task environment.
We considered four canonical swarm robotics tasks in this
study: (i) homing, where the robots had to collectively nav-
igate to a waypoint while avoiding collisions, (ii) dispersion,
where the robots had to keep a target distance to the nearest
neighbor, (iii) clustering, where the robots had to find each
other and aggregate, and (iv) monitoring, where the robots
had to continuously cover a given area.

We adopted the following methodology to synthesize con-
trollers for each task, and to systematically evaluate the
transfer of the controllers to the real robotic swarm:

Definition of the simulation platform: we used a 2D
simulator with simplified physics. The robots’ movement
properties were modeled based on real-robot measurements.

Configuration of sensors and actuators: the robot con-
troller received as inputs the distance to objects of interest
in equal-sized segments around the robot, and outputted the
robot’s speed and direction. To account for the stochastic-
ity of the environment and facilitate the transferability from
simulation to the real robots, we used conservative amounts
of noise in the sensors and actuators in simulation.

Definition of the fitness functions: For each task, we
specified a fitness function that translated the task objective
that needed to be achieved. To evaluate each candidate solu-
tion (controller), multiple simulation trials were conducted,
varying the number of robots and the initial conditions.
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Evolution of robotic control: We used the NEAT evo-
lutionary algorithm to synthesize the neural network con-
trollers for the robots.

Selection of the highest-performing controllers: For
each task, we identified the highest-performing controllers,
according to their fitness score. We selected three controllers
from different evolutionary runs for each task.

Assessment in the real SRS: the real-robot performance
of the controllers was compared to their performance in sim-
ulation. Each controller was tested in three trials, and key
metrics from each task were extracted in order to enable
comparison of performance between simulation and reality.

The study was conducted on a SRS composed of ten small
(65 cm in length), simple, and inexpensive (≈ 300 eur/unit)
aquatic surface robots [3]. Each robot was a differential
drive mono-hull boat with a maximum speed of 1.7 m/s.
The robots communicated with the nearby neighbors us-
ing an ad-hoc Wi-Fi network, and were equipped with GPS
and compass. The experiments were conducted in a semi-
enclosed aquatic environment with a size of 330 m × 190 m.

Overall, the results showed that the controllers were able
to successfully cross the reality gap, as they displayed sim-
ilar behaviors and levels of performance in simulation and
in the real environment. A number of unexpected factors
affected the real-robot experiments, such as temporary mo-
tor failures, speed differences, and communication failures,
but the swarm behaviors were robust to these variations and
they did not significantly affect task performance.

We further conducted a set of experiments to verify key
properties of SRS, namely scalability and robustness. Scal-
ability was tested by evaluating the same controller with
swarms of different sizes, and robustness was tested by
adding or removing robots to the swarm during task exe-
cution. Our results showed that the controllers scaled well
with the swarm size, and that the swarm was able to adapt
to changing and unforeseen conditions while still success-
fully carrying out the task, demonstrating that the afore-
mentioned key swarm properties are present in our system.

3. RECENT DEVELOPMENTS
Monitoring Large-scale Environments: The study pre-
sented in [7] applied the previously synthesized controllers
to an environmental monitoring task, where the robots col-
lected water temperature data in a pre-defined area. The
results showed how the cooperative movement pattern of the
robots enabled them to effectively cover differently shaped
areas that were not considered during the evolutionary pro-
cess. We additionally showed in simulation how the evolved
behaviors could scale to groups of up to 50 robots, areas
of up to 625 ha, and were robust to frequent faults in the
individual robots.

Decomposing Control for Complex Missions: In [6],
we applied the hierarchical control synthesis approach to
solve an intruder detection task, where robots have to nav-
igate to an area of interest, monitor the area, detect and
follow intruders that cross the area, periodically return to
the base station for recharging. We used a hybrid con-
trol algorithm, where a top-level manually programmed fi-
nite state machine arbitrated the low-level evolved behavior
primitives. We demonstrated how hybrid controllers can

produce modular and flexible swarm behaviors, and enable
the control of swarm robotics systems in complex tasks with
realistic constraints.

Behaviorally Heterogeneous Teams: In a recent
study [8], we have shown how cooperative coevolutionary
algorithms (CCEAs) can be used to produce behaviorally
heterogeneous control for teams of aquatic robots. In sim-
ulation, we evolved control for a cooperative predator-prey
pursuit task, where a team of three predators had to coor-
dinate to capture a prey. We then tested a wide variety of
teams in the real robots, most of which transferred without
loss of performance. This study is among the first demon-
strations of CCEAs applied to teams of real robots.

4. CONCLUSION
The study presented in [5], and the subsequent related

studies [6–8], have demonstrated that ER can be success-
fully applied to evolve control for swarm robotics systems
that operate in real-world, uncontrolled conditions. We
demonstrated evolved control in a variety of tasks of dif-
ferent complexity, and using different control synthesis ap-
proaches. Future work will focus in moving from a proof-of-
concept robotic platform to a seaworthy platform that can
be applied to real-world missions. We will therefore need to
address issues such as integration of control with gathered
sensory information, fault detection and fault tolerance, and
autonomous recharging.
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