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ABSTRACT
In [13], we proposed disco, a method that automatically
identifies the groups of tests for which the candidate so-
lutions behave similarly. Each such group gives rise to a
derived objective, which together guide the search algorithm
in multi-objective fashion. When applied to several well-
known test-based problems, the proposed approach signifi-
cantly outperforms the conventional two-population coevo-
lution. This opens the door to efficient and generic counter-
measures to premature convergence for both coevolutionary
and evolutionary algorithms applied to problems featuring
aggregating fitness functions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods
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1. INTRODUCTION
Many optimization and learning problems approached in

evolutionary computation involve objective functions that
reward candidate solutions by counting the number of tests
they pass. When evolving computer programs or controllers,
passing a test requires producing the desired output for a
given input. When learning game strategies, tests are em-
bodied by opponents, and a candidate solution passes a test
if it wins a game against it. In these problems, known in
the context of coevolutionary algorithms [1, 6] as test-based
problems [3, 4, 7], candidate solutions need to interact with
multiple ‘environments’ in order to be evaluated.
Solving a test-based problem consists in finding a candi-

date solution with certain properties. In the most common
case, it should maximize the expected utility, i.e., the average
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outcome against all tests. Finding such a solution is chal-
lenging in many test-based problems, because the number
of tests is usually large, and for some problems even infinite.
The algorithms that naturally match the class of test-

based problems are two-population coevolutionary algorithms
[1, 6]. A typical coevolutionary algorithm maintains a pop-
ulation of candidate solutions S ⊂ S and a separate popu-
lation of tests T ⊂ T . In every generation, each candidate
solution s ∈ S interacts with every test t ∈ T , producing an
interaction outcome g(s, t). The interaction outcomes are
gathered in an interaction matrix G, from which the fitness
values of individuals in S and T are calculated.
An objective function that counts the number of passed

tests such as expected utility usually forms an inherent part
of the problem and makes it amenable to many conventional
algorithms that expect a scalar objective. However, aggre-
gation of interaction outcomes inevitably leads to informa-
tion loss, primarily due to compensation: two solutions that
pass k tests each are considered equally valuable, no matter
which particular tests they pass. Also, aggregation neglects
the fact that some tests can be inherently more difficult than
others, or more or less harder to reach for a given search al-
gorithm. Algorithms that rely on aggregation are oblivious
to these aspects and thus prone to inferior performance.
Compensation can be avoided by comparing the candi-

date solutions using the dominance relation. Dominance
compares the behavior of solutions on particular tests and
is in this sense more scrupulous than the expected utility.
However, by being a partial relation, dominance fails to pro-
vide a useful search gradient whenever none of the compared
solutions passes a superset of the tests solved by the other
solution (cf. [8]). This is unfortunately common: for two
unrelated solutions, it is much more likely that they are mu-
tually non-dominated than that one of them dominates the
other, and that likelihood grows with the number of tests.
Expected utility and dominance occupy thus two extremes

in scrutinizing interaction outcomes. In [13], we proposed
disco, a method that is a compromise between these ex-
tremes. We motivate disco’s design by the following ob-
servations. First, tests are often characterized by differ-
ent difficulty, which is not known a priori. Coming across
a problem instance with all tests equally difficult is much
less likely than difficulty varying across the tests. Second,
any stochastic search algorithm (other than a purely ran-
dom search) has a search bias, i.e., it is more likely to visit
some candidate solutions than others. As a consequence of
diverse test difficulty and search bias, a search algorithm
driven by a scalar evaluation measure tends to converge to
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candidate solutions that solve the tests that are easier and
better ‘reachable’. In parallel search techniques like EAs or
coevolutionary algorithms, the probable aftermath of that
is premature convergence.

disco mitigates this problem by deriving alternative search
objectives via identifying the combinations of interaction
outcomes that prevail in an interaction matrix. The de-
rived objectives form a multi-objective characterization of
the candidate solutions in the context of the current pop-
ulation of tests (cf. [12]) , and are subsequently fed into a
multi-objective selection method nsga-ii [5].

disco broadens thus the bottleneck of evaluation in char-
acterizing the candidate solutions with k objectives rather
than with a single one. On the other hand, keeping k small
ensures that the dominance relation in the derived space is
dense enough to provide a reasonably strong search gradi-
ent (as opposed to the dominance on all tests). Candidate
solutions that feature different ‘skills’ can coexist in a pop-
ulation even if some of them are clearly better than others
in terms of scalar evaluation.
In [13], we conducted scrupulous experimental analysis

on the suite of diversified benchmarks consisting of Iterated
Prisoner’s Dilemma [2], Numbers Games [14] and Density
Classification Task, and demonstrated that disco is able to
identify meaningful derived objectives that are often inter-
nally cohesive and mutually non-redundant. The method
autonomously adjusts the number of derived objectives to
the problem characteristics and the dynamics of evolution-
ary search, and systematically improves the performance
in comparison to the conventional coevolutionary algorithm
driven by the scalar evaluation.
The heuristic character of disco is advantageous in sev-

eral respects. Firstly, it entails only moderate computa-
tional overhead. Secondly, the derived objectives evolve
along the candidate solutions and may adapt to their ca-
pabilities, creating a suitable search gradient while avoiding
over-specialization.

disco offers means to widen the evaluation bottleneck be-
tween the fitness function and a search algorithm. As we
postulated in [11], treating fitness function as a black box
is unjustified, especially when more detailed information on
solution’s characteristics, like interaction outcomes, is eas-
ily available. Such information may deserve more effort in
conceptual analysis, implementation and computational ex-
pense to harness it, but, as we showed in this study, these
costs may pay off with a more effective search method.
In replacing the original objective function with heuris-

tic and transient derived objectives, disco subscribes to the
concept of search driver [10, 9]. A single derived objective
is a search driver in the sense that it conveys only partial
information about the quality of candidate solution. In a
rugged and multimodal fitness landscape, the original ob-
jective may turn out to be more deceptive than an imper-
fect search driver. This becomes particularly true in disco,
where multiple diversified search drivers are used simulta-
neously and so mitigate premature convergence.
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