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What are Complex Networks?

Networks are objects that can be described with the notions of Graph
Theory

Roughly speaking, networks are sets of points (vertices) some of which are
connected in pairs by links (edges or arcs)

They have been used for the last fifty years at least in the field of social
network analysis but were typically very small

They have also been known for a long time in engineering as well, think of
the Internet and power networks for instance

They are, explicitly or implicitly, the basic substrate in almost all fields of
human and technological activity
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Some Complex Networks 1

The domestic US airlines network
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Some Complex Networks 2

Yeast protein interaction network
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Some Complex Networks 3

A portion of the Internet network
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What’s New Then?

In the last fifteen years many large-scale electronic databases of
network data have been recorded and analyzed

New statistical techniques have been used to characterize networks of
large size

Several models have been proposed that approximately reproduce the
observed features of large-scale complex networks

Dynamical processes of many kinds have been modeled and analyzed
on networks, e.g. epidemics, search, tra�c, di↵usion, failures,
cascades, growth, games, learning, among others
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The Main Observations

Many biological, social, and technological networks appear to have
links that are not randomly distributed

There are short paths between most pairs of nodes

Nodes are often clustered in groups

The number of contacts that a node may have can be highly
heterogeneous
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The Elementary Graph Notions Needed 1

The following elementary concepts from graph theory will be needed and
are assumed to be common knowledge

a graph G (V ,E ), where V is the set of vertices and E is the set of
edges or arcs, both finite

graphs can be undirected (symmetrical relationship), directed, or
mixed

the vertex degree for undirected graphs and the in-degree and
out-degree for undirected ones

a path p(G ) as a sequence of vertices or edges and its length l(p)

the adjacency matrix A(G ) of a graph G

weighted graphs in which some numerical value is attached to each
edge
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The Elementary Graph Notions Needed 2

let N = |V |, N is called the order of a graph G . M = |E | is the size
of G .

a complete (undirected) graph has all the possible edges between
pairs of vertices: M = N(N � 1)/2 =

�N
2

�
.

A subgraph of G is a subset of a graph’s edges and associated
vertices that constitutes a graph. That is, G

0
= (V

0
,E

0
) is a

subgraph of G = (E ,V ) if V
0 ✓ V and E 0 ✓ E .

A graph is connected if there is a path of finite length between any
two vertices. A graph that is not connected consists of a set of
connected components.

The neighborhood �(v) of a vertex v is the set of vertices that are
adjacent to v in G .

A graph is dense if the number of edges M / N2. It is sparse if
M ⌧ N(N � 1)/2
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The Elementary Graph Notions Needed 3

Two graphs
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Some Useful Network Statistics

Mean degree k̄ = 1
N

PN
i=1 ki

Degree distribution function P(k): the frequency with which each
degree k appears in the graph

Average path length L̄: the mean of all the two-point shortest paths
in the graph

Clustering coe�cient C : to what extent my neighbors are neighbors
themselves

Several others including centrality measures, correlations of various
kinds etc.
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Degree Distribution Function (DDF)

The degree distribution P(k) of an undirected graph G is a function that
gives the probability that a randomly selected vertex has degree k. P(k)
can also be seen as the fraction of vertices in the graph that have degree k.

For finite networks the DDF is discrete: P(k) =
P

i pi�(k � ki )

one often considers the cumulative DDF : C (k) =
Pkmax

k=kmin
P(k)

For directed graphs one can consider the outdgree distribution function,
and the indegree distribution function.

Marco Tomassini (University of Lausanne) Complex Networks GECCO’16, 7/20/2016 13 / 62

The GP Coauthorship Network (W. B. Langdon)

The largest connected component of the Genetic Programming collaboration network.
Nodes are authors; there is a link between two authors if they have coauthored at least a
paper.
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The GP Coautorship Network DDF
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As in the case of many other complex networks, the DDF is right-skewed
(fat-tailed)
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Average Path Length

We denote the shortest path between nodes i , j 2 V (G ) by lij . The
average path length L̄ of G is then defined as:

L̄ =
2

N(N � 1)

NX

i=1

X

j>i

lij .

The normalizing constant 2/N(N � 1) is the inverse of the total number of
pairs of vertices.

This is a useful measure as it gives an idea of the extension of the network.
A complex network that has a short mean path length is said to be a small
world

Here“short”means that L̄ / log(N).
A“long”mean path would instead show a dependence of the type
L̄ / N1/d with a small integer d
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Clustering Coe�cient

Consider a node j of degree k in a graph. If all k vertices in j ’s
neighborhood were completely connected to each other, forming a clique,
then the number of edges would be equal to

�k
2

�
.

The clustering coe�cient Cj of node j is defined as the ratio between the
e edges that actually exist between the k neighbors and the number of
possible edges between these nodes:

Cj =
e
�k
2

� =
2e

k(k � 1)
. (1)

the higher the value of Cj , the more likely it is that two vertices that are
adjacent to a third one are also neighbors of each other (transitive closure
⌘ formation of triangles)

Marco Tomassini (University of Lausanne) Complex Networks GECCO’16, 7/20/2016 17 / 62

Example

j

Cj=0

j

Cj=0.5

j

Cj=1

In the left image the clustering coe�cient of node j , Cj = 0 since there are no links
among j ’s neighbors.
In the middle image Cj = 0.5 because three of the possible maximum six edges among
the neighbors of j are present.
In the right image Cj = 1 as all the edges that could be there are actually present (it is a
clique).
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Average Clustering Coe�cient

The average clustering coe�cient C̄ is the average of Ci over all N
vertices i 2 V (G ):

C̄ =
1

N

NX

i=1

Ci .

The clustering coe�cient of a graph G thus expresses the degree of
locality of the connections.
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Centrality

The concept of centrality is an old one in social network analysis. The idea
is to characterize the most central actors in a network, also called
sociometric “stars”.

One quick measure is the degree of a node: the highest its degree, the
most central the node is. But this view is only local.

Instead, in large networks it is also of interest to characterize the nodes or
the links that, in some sense, have strategic global significance for the
whole network. Some of the measures used for that purpose are:

node and edge betweennes

closeness centrality

eigenvector centrality

Marco Tomassini (University of Lausanne) Complex Networks GECCO’16, 7/20/2016 20 / 62173



Betweennes Centrality

The betweennes bv of a vertex v 2 V :

bv =
X

i 6=v 6=j

nij(v)

nij

Where nij is the total number of shortest paths between i and j , and nij(v)
is the number of those shortest paths that go through v .

Nodes with high betweennes are more central in the sense that they have
more control since more tra�c goes through them. Nodes with high
betweennes play the role of “brokers” in a social sense.

Edge betweennes is defined similarly but for edges instead of nodes.
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Correlations and Assortativity

It is of interest to compute correlations of variables represented at the
vertices of a complex network.
This can be done through the usual Pearson correlation coe�cient or
through other similar measures.

The most immediate one is degree-degree correlation which can be
computed through the joint degree distribution function P(k1, k2); that is,
the probability of finding an edge whose end points have degree k1 and k2
respectively.

It has been found that social networks are in general assortative (positive
correlation) since vertices of degree k tend to be connected to vertices of
similar degree. In contrast, “technological networks” like the Internet are in
general disassortative (i.e. node degrees are negatively correlated).
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Clusters at the Mesoscopic Scale: Communities

loosely speaking, communities are groups of vertices such that there are
many edges inside groups and few to other groups.

The following is a famous example: the so called“Karate club network”:
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Clusters at the Mesoscopic Scale: Communities

Another example: communities in the NCAA football teams network:

Community detection is a hard computational problem. However, there
exist several fast heuristic methods to find clusters, overlapping or not.
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Random Graphs 1

Let’s have N vertices. Assume that each of the possible N(N � 1)/2 edges is
present with probability p and absent with probability 1� p.
This gives the GN,p ensemble of equiprobable Random Graphs.
The following is a small random graph with N = 200 and p = 0.01, which gives a
mean degree of about 2
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Random Graphs 2

A remarkable property of random graphs is the birth of a giant component when
the mean degree reaches 1. After this point, the giant component contains O(N)
vertices, while the other smaller components are of size O(logN).
The phase transition is sharp for N ! 1, it is only approximate in real graphs
because of finite-size e↵ects.

Figure redrawn from M. Newman’s book“Networks”
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Random Graphs 3

Here is a random graph when p = 0.003. With N = 200, this gives a mean
degree k̄ of 0.6 which is below the transition critical point of k̄ = 1
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Random Graphs 4

For a random graph with connection probability p, the probability P(k)
that a random node has degree k is given by

P(k) =

✓
N � 1

k

◆
pk(1� p)N�1�k .

This is the number of ways in which k edges can be selected from a
certain node out of the N � 1 possible edges, given that the edges can be
chosen independently of each other and have the same probability p.
Thus, the average degree k̄ of a random graph is (N � 1)p ' Np for large
N.

For large N, small p, and constant Np, the binomial distribution can be
approximated by a Poissonian one with mean k̄ = Np:

P(k) = e�k̄ k̄k

k!
.

Marco Tomassini (University of Lausanne) Complex Networks GECCO’16, 7/20/2016 28 / 62175



Are Random Graphs Good Models for Complex Networks?

Are random graphs small words? The answer is yes, as one can show
that L̄ = O(logN) for a random graph

Is the clustering coe�cient high? No, the CC is p ' k̄/N and it tends
to 0 for large N

Are the node degrees spread over an heterogeneous range? No,
because they are strongly peaked around the mean Np

In conclusion, random graphs have the small world property but they are
not good models for actual complex network because of their low
clustering and their homogeneous degree distribution
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Watts and Strogatz Small World Networks 1

The starting point is a lattice in which one goes systematically through
each node and, with probability �, its links are rewired toward a randomly
chosen node avoiding duplicate edges.
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(a) Regular one-dimensional lattice with k = 4. (b) A small-world graph
obtained by randomly rewiring some of the nearest-neighbor links.
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Watts and Strogatz Small World Networks 2

Lattices have high clustering and high mean path lengths. There exist a
range of � for which rewired networks are small-worlds and have a high
clustering coe�cient. The figure shows scaled clustering coe�cient and
scaled path length as a function of �
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Watts-Strogatz networks still have a peaked degree distribution function.
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Barábasi-Albert Model 1

This is a growing network model:

Start with a small clique of nodes (a fully connected graph) of N0

nodes and M0 edges

At each time step a new node is added and forms m new links to m
existing nodes

The probability ⇡(ki ) with which an incoming node forms an edge
with an existing node i is:

⇡(ki ) =
kiP
j kj

,

i.e., the higher i ’s degree is, the larger the probability: this is called
preferential attachment
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Barábasi-Albert Model 2

at time step t the graph will have Nt = N0 + t vertices and
Mt = M0 +mt edges

the number of nodes with comparatively high degree should intuitively
increase with increasing t

such a growing graph evolves into a stationary scale-free network with
a power-law probability distribution of the degree P(k) ⇠ k�� , with
� ⇠ 3.

This kind of process imitates, to some extent, the growth of the web, in
which already successful pages receive more links; citation networks, in
which important papers get cited many times, and many others in which
“popular”vertices attract more links when the network forms and evolves
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Barábasi-Albert Model 3

An example of a small (N=200, m=2) computer-generated Barabási-Albert
network. The presence of a few highly connected nodes (hubs) and of many
poorly connected ones is clearly visible
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Airline Network: Empirical Degree Distribution

The empirical cumulative degree distribution for the North American part:
scale-free with a cuto↵. The graph has 932 nodes (airports) and the av.
path length is ⇡ 4
Other world regions, e.g. Europe, have similar properties
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Discussion

The BA model is closer to many measured complex networks than
either RGs or WS networks

However, the clustering coe�cient is too low

the model has a fixed exponent (⇡ 3) of the power-law while a range
of exponents between 1.5 and 3.5 have been observed

However:

It is possible to construct random graphs with arbitrary degree
distributions given a degree sequence {k1, k2, . . . .kN}
More recent models exist that closely match the statistical properties
of social and other real networks

It remains nevertheless true than any real network is unique and
cannot be exactly generated by any model
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Relational Space and Geographical Space
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Spatial Networks

Spatial networks are embedded in metric space, usually the ordinary
physical two- or three-dimensional space where actual distances become
important

There are many networks in society that are of this kind: transportation,
communication, biology, roads, streets, power grids, water distribution,
ad-hoc networks ...

Some of those networks are also planar: edges do not intersect in the 2-D
plane. Examples: road networks (approximately), rail networks.
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Railways, Subways

The Swiss rail system: a planar spatial network with N = 1613 nodes
(stations) and E = 1680 edges (connections) between stations.
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Swiss Railway

the mean degree k̄ ⇡ 2.1

average shortest path L̄ ⇡ 47 which is O(
p
(N)) similar to 2-D lattices

the degree distribution P(k) is peaked (exponential) instead of being
broadscale

Here we see that geographical and economical constraints play a
fundamental role in determining the possible network structure: large
degrees are hindered

Results are qualitatively similar for other rail, tramway, and subway systems
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Random Geometric Graphs 1

The Random Geometric Graph (RGG) is a standard spatial network model
that plays a role for spatial networks similar to the one played by the
Erdös-Rényi random graph for relational ones

N nodes are placed on the unitary space ⌦ 2 Rd with uniform
distribution.

an edge is created for every pair of nodes whose distance is r < R.
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Random Geometric Graphs 2

here d = 2, N = 100, and R = 0.13

X

Y

Z

0

0

1

1

Neighborhood

area

The resulting degree distribution P(k) / 1/k! is Poissonian but, contrary
to ER random graphs, the clustering coe�cient is high
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Summing Up

Spatially embedded networks are very common and important in
practice; they have been comparatively less studied than relational
networks

Spatial networks feature natural constraints such as geographic,
technological, and economical that strongly influence their structures

Because of the above most actual spatial networks have a peaked
degree distribution function, a relatively long mean path length, and
high clustering

Several useful models of spatial networks do exist: these can be
benchmarked and compared to actual empirically measured graphs
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Time Evolution of Networks

The networks we have seen up to now have been supposed to be static,
which is adequate if they do not change in time or they change so slowly
that they can be considered fixed. As well, this description is acceptable if
we are interested in a particular “frozen” time snapshot of a given evolving
network.

However, it is obvious that many networks do not stay the same as time
goes by: tra�c networks, crowd networks, ad-hoc mobile networks of
communication devices, and many many others such as social networks do
change at their own rate.
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Network Dynamics

The following processes may contribute to network dynamics, and can
make the system an open, non-equilibrium one, where both the number of
nodes and links may fluctuate:

New nodes may join the network

Nodes may leave the network

New links can be established among existing nodes

Links can be cut among existing nodes

In some cases, a first acceptable approximation is to consider the number
of vertices N constant and only the number of links M and their endpoints
may change (closed system approximation)
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An Example of Network Evolution: E-mail Network

A study comprising 43,553 students, faculty, and sta↵ at a large university,
in which interactions between individuals are inferred from time-stamped
e-mail headers recorded over one academic year.

Use of e-mail communication to infer the underlying network of social ties
is supported by recent studies reporting that use of e-mail in local social
circles is strongly correlated with face-to-face and telephone interactions.

The instantaneous network at any point in time includes all pairs of
individuals that sent one or more messages in each direction during the
past 60 days.

from: G. Kossinets and D. J. Watts, ”Empirical Analysis of an Evolving
Social Network”, Science, 311, 5757, 88-90, 2006.
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Some Time-Resolved Statistics

Evolution of mean degree k̄, fractional size S of the largest component, mean path
length L in the largest component, and clustering coe�cient C . Data computed with a
smoothing window of 30 days (dashed), 60 says (thick), and 90 days (dots).

Those network properties stay relatively stable, depending of the time-window that is
used. Of course larger changes correspond to particular periods like end of semesters and
vacations.
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Evolution of the GP Coauthorship Network 1986-2006

This network evolves more slowly and increases its size and density.
The following figure shows the increase of the number of vertices (collaborators)
and of edges (collaborations).
Both grow faster than linear but edges grow faster than nodes because many
papers have more than two authors and new authors may collaborate with authors
already in the network.
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Evolution of the GP Coauthorship Network 1986-2006

Evolution of the size of the first and second largest components in the GP
coauthorship graph. The largest one tends to include more and more nodes as
time goes by. This is an instance of a general phenomenon in growing networks.
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Evolution of the GP Coauthorship Network 1986-2006

Evolution of the average degree (left), and of the degree distribution
(right)
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Evolution of the GP Coauthorship Network 1986-2006

Evolution of the clustering coe�cient in the whole graph and in the largest
component
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Contagion: the SI Model and Selection Pressure in EAs

In Evolutionary Algorithms (EAs) the intensity of selection controls the
exploitation/exploration tradeo↵.

The higher the selection pressure, the more exploitative the EA.

One straightforward method for changing the selection pressure
exogenously, i.e. without tampering with selection methods and their
parameters, is to keep a standard selection algorithm, say tournament or
ranking selection, and vary the population structure seen as a graph.
The standard population structure is the well-mixed population, which
corresponds to a complete graph.

Selection pressure, in turn, is conventionally measured by its takeover time,
i.e. the time it takes for a best individual to take over the entire
population under a given selection method.
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Selection Intensity on Structured Populations

The population structure has a very marked influence on the takeover
times and thus on selection intensity (pop. size 1024, binary tournament
selection):
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Selection Intensity on Complex Networks: WS Networks

The selection pressure can be varied in a wide range by using a
Watts-Strogatz small-world network with di↵erent values of the rewiring
probability �.
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Selection Intensity on Complex Networks: BA Networks

On BA networks takeover times are extremely fast, at least as fast as in
well-mixed populations (left image). If the best individual is a hub in the
graph the propagation is even faster (right image)
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Selection pressure is too strong: not good for EAs
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Epidemics: the SIR Model

The previous system resembles what is called the SI (Susceptible-Infected)
model in epidemics: An individual is either susceptible or infected. When
in contact with an infected individual, a susceptible becomes infected with
a certain probability. After a certain time, everybody is infected, which is
an absorbing state of the system.

A more epidemiologically realistic model is the SIR
(Susceptible-Infected-Recovered) model. The state diagram is:

S ! I ! R

Here“Recovered”may mean either that the individual has got
immunity and can no longer catch the infection, or that it is dead
(removed).
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Epidemics: the SIR Model on Well-Mixed Populations

The mean-field SIR model gives rise to three coupled di↵erential equations for the
time evolution of the fractions of susceptible, infected, and recovered individuals.
Numerical solution with given initial conditions and actual values for the average
rate of encounters and average recovery rate gives the following curves:

Figure redrawn from M. Newman’s book“Networks”
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The“Black Death”Propagation
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Venice as a Mixed Spatial Network

Work by G. Colavizza, PhD Student, EPFL Lausanne

Green edges are land routes; Blue edges are are water routes. Grey vertices are
land nodes, red nodes are mixed land and water nodes, and cyan nodes are water
nodes only.
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Plague Propagation In Venice: No Naval Travel

Results of a computer simulation of a SIR process where people only move
in-land. The network is spatial with a relatively high mean path length (34). This
results in a low-infection process.
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Plague Propagation Including Naval Travel

The following results include a naval travel probability of only 0.15. This is
enough to make the network a rather small-world one thanks to the water travel
shortcuts (L̄ = 8.6). The result is a higher infection rate, more similar to the
well-mixed population case.
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Where to go from here?

An excellent textbook that o↵ers a complete coverage of the field:

M. E. J. Newman, Networks: An Introduction, Oxford University Press,
2010.

An easier to read book with an emphasis on social and economic networks:

D. Easley and J. Kleinberg, Networks, Crowds, and Markets, Cambridge
University Press, 2010.

It can also be freely downloaded as a pdf from:

https://www.cs.cornell.edu/home/kleinber/networks-book/

An intermediate level good book:

A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on
Complex Networks, Cambridge University Press, 2008.
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