Evolutionary Computation: A Unified Approach

Kenneth De Jong

Computer Science Department George Mason University kdejong@gmu.edu www.cs.gmu.edu/~eclab

Copyright is held by the owner/author(s).

GECCO'16 Companion, July 20-24, 2016, Denver, CO, USA
ACM 978-1-4503-4323-7/16/07.

Historical roots:

- Evolution Strategies (ESs):
 - developed by Rechenberg, Schwefel, etc. in 1960s.
 - focus: real-valued parameter optimization
 - individual: vector of real-valued parameters
 - reproduction: Gaussian "mutation" of parameters
 - M parents, K>>M offspring

2

Historical roots:

- Evolutionary Programming (EP):
 - Developed by Fogel in 1960s
 - Goal: evolve intelligent behavior
 - Individuals: finite state machines
 - Offspring via mutation of FSMs
 - M parents, M offspring

3

Historical roots:

- Genetic Algorithms (GAs):
 - developed by Holland in 1960s
 - goal: robust, adaptive systems
 - used an internal "genetic" encoding of points
 - reproduction via mutation and recombination of the genetic code.
 - M parents, M offspring

Present Status:

- wide variety of evolutionary algorithms (EAs)
- wide variety of applications
 - optimization
 - search
 - learning, adaptation
- well-developed analysis
 - theoretical
 - experimental

5

Interesting dilemma:

- A bewildering variety of algorithms and approaches:
 - GAs, ESs, EP, GP, Genitor, CHC, messy GAs, ...
- Hard to see relationships, assess strengths & weaknesses, make choices, ...

6

A Personal Interest:

- Develop a general framework that:
 - Helps one compare and contrast approaches.
 - Encourages crossbreeding.
 - Facilitates intelligent design choices.

7

Viewpoint: ? GA ES EP GP

Starting point:

- Common features
- Basic definitions and terminology

9

Key Element: An Evolutionary Algorithm

- Based on a Darwinian notion of an evolutionary system.
- Basic elements:
 - a population of "individuals"
 - a notion of "fitness"
 - a birth/death cycle biased by fitness
 - a notion of "inheritance"

11

Common Features:

- Use of Darwinian-like <u>evolutionary</u> processes to solve difficult <u>computational</u> problems.
- Hence, the name:

Evolutionary Computation

10

An EA template:

- 1. Randomly generate an initial population.
- 2. Do until some stopping criteria is met:

Select individuals to be parents (biased by fitness). Produce offspring.

Select individuals to die (biased by fitness).

End Do.

3. Return a result.

Instantiate by specifying:

- Population dynamics:
 - Population size
 - Parent selection
 - Reproduction and inheritance
 - Survival competition
- Representation:
 - Internal to external mapping
- Fitness

13

M parents Overlapping Non-overlapping

Population sizing:

- Parent population size **M**:
 - degree of parallelism
- Offspring population size **K**:
 - amount of activity w/o feedback

15

Population sizing:

• Examples:

M=1, K small: early ESsM small, K large: typical ESs

- M moderate, K=M: traditional GAs and EP

- M large, K small: steady state GAs

-M = K large: traditional GP

Selection pressure:

- Overlapping generations:
 - more pressure than non-overlapping
- Selection strategies (decreasing pressure):
 - truncation
 - tournament and ranking
 - fitness proportional
 - uniform
- Stochastic vs. deterministic

17

Exploitation/Exploration Balance:

- Selection pressure: exploitation
 - reduce scope of search
- Reproduction: exploration
 - expand scope of search
- Key issue: appropriate balance
 - − e.g., strong selection + high mutation rates
 - e.g, weak selection + low mutation rates

19

Reproduction:

- Preserve useful features
- Introduce variety and novelty
- Strategies:
 - single parent: cloning + mutation
 - multi-parent: recombination + mutation
 - **–** ...
- Price's theorem:
 - fitness covariance

18

Representation:

- How to represent the space to be searched?
 - **Genotypic** representations:
 - · universal encodings
 - portability
 - minimal domain knowledge

Representation:

- How to represent the space to be searched?
 - Phenotypic representations:
 - problem-specific encodings
 - leverage domain knowledge
 - lack of portability

21

Fitness landscapes:

- Continuous/discrete
- Number of local/global peaks
- Ruggedness
- Constraints
- Static/dynamic

22

The Art of EC:

- Choosing problems that make sense.
- Choosing an appropriate EA:
 - reuse an existing one
 - hand-craft a new one

23

EC: Using EAs to Solve Problems

- What kinds of problems?
- What kinds of EAs?

Intuitive view:

- parallel, adaptive search procedure.
- useful global search heuristic.
- a paradigm that can be instantiated in a variety of ways.
- can be very general or problem specific.
- strong sense of fitness "optimization".

25

Evolutionary Optimization:

• fitness: function to be optimized

• individuals: points in the space

• reproduction: generating new sample

points from existing ones.

26

Useful Optimization Properties:

- applicable to continuous, discrete, mixed optimization problems.
- no *a priori* assumptions about convexity, continuity, differentiability, etc.
- relatively insensitive to noise
- easy to parallelize

27

Real-valued Param. Optimization:

- high dimensional problems
- highly multi-modal problems
- problems with non-linear constraints

Discrete Optimization:

- TSP problems
- Boolean satisfiability problems
- Frequency assignment problems
- Job shop scheduling problems

29

Multi-objective Optimization:

- Pareto optimality problems
- a variety of industrial problems

30

Properties of standard EAs:

- GAs:
 - universality encourages new applications
 - well-balanced for global search
 - requires mapping to internal representation

31

Properties of standard EAs:

- ESs:
 - well-suited for real-valued optimization.
 - built-in self-adaptation.
 - requires significant redesign for other application areas.

Properties of standard EAs:

- **EP**:
 - well-suited for phenotypic representations.
 - encourages domain-specific representation and operators.
 - requires significant design for each application area.

33

Other EAs:

- GP: (Koza)
 - standard GA population dynamics
 - individuals: parse trees of Lisp code
 - large population sizes
 - specialized crossover
 - minimal mutation

34

Other EAs:

- CMA-ESs (Hansen et al)
 - Covariance Matrix Adaptation
 - ES variation to deal with parameter interactions
 - Maintains/updates matrix used to help generate useful offspring.

35

Other EAs:

- (m,k)EAs: (Wegener et al)
 - Combines ES dynamics with GA representation and operators:
 - Binary representations
 - Bit-flip mutation
 - Applied to discrete optimization problems
 - Simplicity yields strong convergence proofs

Other EAs:

- Differential Evolution: (Storn & Price)
 - Specifically for continuous function optimization
 - K=1 offspring
 - · overlapping generations
 - parent selection: deterministic
 - 1 offspring via crossover with a 3-parent combo
 - survival selection: parent vs. offspring

37

Other EAs:

- Messy GAs (Goldberg)
- Genitor (Whitley)
- Genocop (Michalewicz)
- CHC (Eschelman et al)
- Geometric Semantic GP: (Moraglio et al)
- Gene Expression Programming (Ferreira)
- Neuroevolution (Stanley)

• ...

38

Designing an EA:

- Choose an appropriate representation
 - effective building blocks
 - semantically meaningful subassemblies
- Choose effective reproductive operators
 - fitness covariance

39

Designing an EA:

- Choose appropriate selection pressure
 - local vs. global search
- Choosing a useful fitness function
 - exploitable information

Industrial Example: Evolving NLP Tagging Rules

- Existing tagging engine
- Existing rule syntax
- Existing rule semantics
- Goal: improve
 - development time for new domains
 - tagging accuracy

41

Evolving NLP Tagging Rules

- Representation: (first thoughts)
 - variable length list of GP-like trees

• Difficulty: effective operators

42

Evolving NLP Tagging Rules

- Representation: (second thoughts)
 - variable length list of pointers to rules

- Operators:
 - mutation: permute, delete rulesrecombination: exchange rule subsets

– Lamarckian:

add a new rule

43

Evolving NLP Tagging Rules

- Population dynamics:
 - multi-modal: M >small
 - typical: 30-50
 - high operator variance: K/M > 1
 - typical: 3-5:1
 - parent selection: uniform
 - survival selection: binary tournament

Evolving NLP Tagging Rules

- So, what is this thing?
 - A GA, ES, EP, ...
- My answer:
 - a thoughtfully designed EA

45

Analysis tools:

- Schema analysis
- Convergence analysis
- Markov models
- Statistical Mechanics
- Visualization

46

New developments and directions:

- Exploiting parallelism:
 - coarsely grained network models
 - isolated islands with occasional migrations
 - finely grained diffusion models
 - continuous interaction in local neighborhoods

47

New developments and directions:

- Co-evolutionary models:
 - competitive co-evolution
 - improve performance via "arms race"
 - cooperative co-evolution
 - evolve subcomponents in parallel

New developments and directions:

- Exploiting Morphogenesis:
 - sophisticated genotype --> phenotype mappings
 - evolve plans for building complex objects rather than the objects themselves.

49

New developments and directions:

- Hybrid Systems:
 - combine EAs with other techniques:
 - EAs and gradient methods
 - · EAs and TABU search
 - EAs and ANNs
 - EAs and symbolic machine learning

51

New developments and directions:

- Self-adaptive EAs:
 - dynamically adapt to problem characteristics:
 - varying population size
 - · varying selection pressure
 - · varying representation
 - varying reproductive operators
 - goal: robust "black box" optimizer

50

New developments and directions:

- Time-varying environments:
 - fitness landscape changes during evolution
 - goal: adaptation, tracking
 - standard optimization-oriented EAs not wellsuited for this.

New developments and directions:

- Agent-oriented problems:
 - individuals more autonomous, active
 - fitness a function of other agents and environment-altering actions
 - standard optimization-oriented EAs not wellsuited for this.

53

EA Generalizations:

- Meta-heuristics:
 - Heuristic for designing heuristics
 - E.g., hill climbing, greedy, ...
 - Adopt no-free lunch view
 - Instantiate EA template in a problem-specific manner

54

EA Generalizations:

- Nature-inspired Computation:
 - Early example: simulated annealing
 - Today: evolutionary algorithms
 - Others: particle swarm, ant colony, ...

55

Conclusions:

- Powerful tool for your toolbox.
- Complements other techniques.
- Best viewed as a paradigm to be instantiated, guided by theory and practice.
- Success a function of particular instantiation.

More information:

- Journals:
 - Evolutionary Computation (MIT Press)
 - Trans. on Evolutionary Computation (IEEE)
 - Genetic Programming & Evolvable Hardware
- Conferences:
 - GECCO, CEC, PPSN, FOGA, ...
- Internet:
 - www.cs.gmu.edu/~eclab
- My book:
 - Evolutionary Computation: A Unified Approach
 - MIT Press, 2006

