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ABSTRACT
An important challenge in neuroevolution is to evolve multimodal
behavior. Indirect network encodings can potentially answer this
challenge. Yet in practice, indirect encodings do not yield effective
multimodal controllers. This paper introduces novel multimodal
extensions to HyperNEAT, a popular indirect encoding. A previous
multimodal approach called situational policy geometry assumes
that multiple brains benefit from being embedded within an explicit
geometric space. However, this paper introduces HyperNEAT ex-
tensions for evolving many brains without assuming geometric re-
lationships between them. The resulting Multi-Brain HyperNEAT
can exploit human-specified task divisions, or can automatically
discover when brains should be used, and how many to use. Exper-
iments show that multi-brain approaches are more effective than
HyperNEAT without multimodal extensions, and that brains with-
out a geometric relation to each other are superior.
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1. INTRODUCTION
Success in many domains requires agents capable of complex

multimodal behavior, i.e. agents able to switch between distinct
policies based on environmental context. This paper uses Hyper-
NEAT [4] to evolve neural network brains for agents. However, Hy-
perNEAT is extended to produce Multi-Brain HyperNEAT (MB-
HyperNEAT)1, which allows a single agent to have multiple brains.

2. BACKGROUND AND EXTENSIONS
HyperNEAT evolves Compositional Pattern Producing Networks

(CPPNs) to specify connectivity patterns across indirectly-encoded
substrate networks. The substrate must be embedded within a ge-
ometric space (Figure 1a). HyperNEAT can generate arbitrarily
large networks, theoretically capable of generating multimodal be-
havior. However, an easier way to realize multimodal behavior is
with several smaller networks, rather than with a single large one.
1Download at southwestern.edu/~schrum2/re/mb-hyperneat.html
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Situational policy geometry [1] is an existing approach that gen-
erates multiple brains. Agents have distinct brains for different sit-
uations, but they share an underlying geometric relationship due to
an additional situation input in the CPPN (Figure 1b). A human
must decide which brain to use in each situation. These restrictions
limit the applicability and effectiveness of the method.

This paper presents three main extensions to HyperNEAT to pro-
duce MB-HyperNEAT. Each idea is inspired by the direct-encoded
Modular Multiobjective NEAT [3]: (1) The network structure from
Multitask Learning is adapted to create multitask CPPNs (Figure 1c).
In this case, a human must still specify when each policy is used.
(2) Preference neurons [3] are added that allow evolution to dis-
cover when an agent should use each brain (Figure 1d). In this
way, a different brain can be active on each time step, allowing
evolution to autonomously discover an effective task division. (3)
Module mutation operators [3], enable the automatic creation of
new modules. Module mutation is a structural mutation operator
that adds a new output module to a network. If brain substrates
have preference neurons, then each application of module mutation
to a CPPN creates a new brain substrate that the agent can arbitrate
between using preference neurons.

3. EXPERIMENTS
Experiments are conducted in two previous multimodal domains

(team patrol and dual task) and two new ones (lone patrol and two
rooms). These domains all use simulated Khepera robots.

Team patrol was originally used to demonstrate the effective-
ness of situational policy geometry [1]. A team of robots must
advance into a maze, and then return to their starting point. The
new lone patrol domain uses the same environment, but requires
a single robot to explore each part of the maze instead of a team.
Dual task [2] consists of two isolated tasks, hallway navigation and
foraging, with no clear geometric relation between the behaviors
required in these tasks. The new two rooms domain requires hall-
way navigation and foraging comingled in a single environment:
Two foraging rooms are separated by a convoluted hallway.

Standard HyperNEAT, which has only one module (1M), pro-
vided a performance baseline. Situational policy geometry (SPG)
and multitask (MT) approaches had multiple modules using a human-
specified task division. Approaches not depending on such task
divisions include CPPNs with two (2M) and three (3M) preference
modules, and CPPNs using different forms of module mutation:
MM(P), MM(R), or MM(D).

4. RESULTS
The results show that multimodal approaches discover better be-

havior faster than 1M, and that multitask and preference neuron ap-
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(b) Situational Policy Geometry
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(d) Preference Neurons

Figure 1: Methods for Generating Substrate Brains. (a) A standard HyperNEAT CPPN creates a single-brain substrate [4]. For each possible connection,
the xy-coordinates of neurons are input into the CPPN. The W output determines its weight (B determines a fixed bias). (b) Situational policy geometry [1]
gives CPPNs an extra S input. There is a separate brain for each value of S the CPPN is queried with. The next two approaches are new to this work:
(c) A multitask CPPN has a group of outputs for each brain (no S dimension). When the CPPN is queried, each output module supplies the corresponding
connection weight for a different brain. (d) Preference neuron CPPNs add a P neuron to each output module that is used only when the postsynaptic neuron
is a preference neuron. The preference neuron (white) of each brain has potential connections to all neurons of the hidden and input layers. All brains are
activated on each time step, but only the one with the highest preference output matters.
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Figure 2: Experimental Results Across Domains. Average champion fitness by generation (2,000 generations) across 30 runs of evolution for each
approach in each domain. Transparent regions show 95% confidence intervals. Having multiple brains leads to better levels of performance faster.

proaches can evolve skilled multimodal behavior without any no-
tion of situational policy geometry.

In all domains, the Kruskal-Wallis test indicates a significant dif-
ference between approaches (p < 0.01). In the dual task, time to
reach the maximum score is compared rather than final score be-
cause all approaches reach the maximum. Except in two rooms,
post hoc testing indicates that compared to all other methods, 1M is
significantly worse, and MT significantly better (p < 0.01). In two
rooms, MT is significantly better than all but MM(P) (p < 0.05),
and only SPG, MM(P), and MT are significantly better than 1M
(p < 0.05). Though at least one preference neuron approach is al-
ways better than SPG, it is never significantly better. Fitness scores
across generations are in Figure 2.

In each domain, observation of evolved behaviors reveals why
certain approaches are superior, and how multiple modules are used
by the modular approaches. Videos of representative behaviors are
available at southwestern.edu/~schrum2/re/mb-hyperneat.html. A
full-length version of this paper with further details, analysis, and
discussion is also available.

5. CONCLUSION
This paper combines the HyperNEAT indirect encoding and the

MM-NEAT approach to evolving modular networks, thereby real-
izing the strengths of both approaches. Results show that the re-
sulting MB-HyperNEAT approach outperforms a previous attempt
to merge HyperNEAT with multimodal extensions, and that it is
possible to evolve modular ANNs when a human-specified task di-
vision is unavailable. The conclusion is that MB-HyperNEAT is a
promising toolkit for evolving complex multimodal behavior that
can reduce the need for specialized domain knowledge.
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