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ABSTRACT
The aim of this study is to evolve novel seeds for John Conway’s
Game of Life cellular automaton (CA) with Compositional Pattern
Producing Networks (CPPNs), a variation of artificial neural net-
works known to evolve organic patterns when used to process vi-
sual data. CPPNs were evolved using both objective search (im-
plemented with NeuroEvolution of Augmenting Topologies) and
novelty search, which focuses on finding novel solutions rather
than objectively "fitter" solutions. Objective search quickly evolved
game of life solutions that converged to trivial combinations of pre-
viously known solutions. However, novelty search produced non-
trivial symmetries and complex high period oscillators such as the
period 15 pentadecathlon. Regardless, neither approach evolved
purely novel or undocumented seeds. Despite this failure, the com-
plex evolved solutions demonstrate that CPPNs can serve as a pow-
erful encoding for cellular automata seeds. As such, these results
stand as the first baseline for further exploration into encoding cel-
lular automata using CPPN.

1. INTRODUCTION
Recent studies have suggested the importance of cellular au-

tomata (CA) in modeling large, or inherently stochastic data sets
[4]. However, depending on the resolution of the CA being studied,
machine learning algorithms are shown to out-perform traditional
computational analysis methods [1]. Conway’s Game of Life is a
zero-player CA that takes in an input set of dead and alive cells
(called a "seed"), and performs a series of updates until the board
is completely dead (i.e. empty). Given that many sample solu-
tions to this tend to be symmetric, Compositional Pattern Produc-
ing Networks (CPPNs) show promise in evolving novel Game of
Life solutions due to the inherent symmetries of the CPPN basis
fitness functions [6]. Although artificial neural networks have been
applied to CAs before [1], this study is the first to apply CPPNs.

2. EXPERIMENTAL SETUP
The Game of Life board implementation was implemented with

a toroidal topology in order to constrain all behavior to a small
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visible space. Then, for each cell of the board, four values were
given to the CPPN to process: x and y values, Euclidean distance
from center, and a bias value of 1 (Figure 1).

Figure 1: Example Game of Life seed illustrating the underlying
coordinate system as well as the inputs and outputs to the CPPN

Neuroevolution of Augmenting Topologies (NEAT) was used to
evolve a population of 100 CPPNs to seek novel seed patterns. This
required the development of a fitness function in order to allow
NEAT to maximize objective fitness. Three fitness functions were
developed for this purpose: rewarding solution lifetime, rewarding
mass and lifetime, and rewarding lifetime while punishing mass.
Lifetime was defined as the number of simulation steps before a
trivial solution arose (still lifes, or low period oscillators), while
mass was defined as the number of living cells at the end of simu-
lation time.

Although NEAT has demonstrated success as an evolutionary
computation algorithm, a major criticism of NEAT is that it tends
to converge to sub–optimal solutions when confronted with decep-
tive tasks. In a previous study [3], when a robot was confronted
with a deceptive maze problem that required the robot to initially
travel away from the desired goal state, a computational mecha-
nism known as novelty search outperformed NEAT by evolving
a wide variety of solutions that broke out of a local maximum.
Novelty search is a variation of NEAT in which the CPPNs in the
evolving population were rewarded based on novelty or unique-
ness, rather than objective fitness models such as those outlined for
NEAT. Hence, novelty search was chosen here to evolve a diverse
set of CA seeds, given that NEAT may evolve previously known
solutions.

The main difficulty in using novelty search is simply defining
the sparseness metric, or how different one seed pattern is from an-
other previously seen seed. Sparseness is calculated using a system
of "behaviors" that are compared to one another. Each seed has a
behavior associated with it: a tuple with a length equal to the num-
ber of grid spaces in the seed patterns. Each element of the behavior
tuple is either (0,0) indicating that the given grid space has a dead
cell, or it has the coordinate pair associated with the grid space to
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indicate a living cell. The k nearest neighbors are then compared
by finding the Euclidean distance between each pair of behavior
elements for each pairing with the neighbors.

It is important to note that the behavior tuples are formed from
the initial seed pattern generated by the CPPN, rather than the final
state of the game board after the game has been played. This deci-
sion was made to avoid a subtle pitfall of this experimental setup:
a solution that has identical end behavior to another solution may
receive a high sparseness metric if it is ever so slightly out of phase
from the other solution. Thus any number of identical end solutions
would all have a high sparseness metric given that they are all out
of phase from one another when the simulation ends.

3. RESULTS
Despite initial expectations, many of the fitness functions used

in our objective search experiments led to extremely similar end
behavior. The fitness function rewarding the seed pattern’s lifetime
until a still life solution tended to produce similar, somewhat trivial
end behavior in every generation: simple patterns of still lives, and
occasionally, oscillators of period two called "blinkers" (Figure 2a).

The fitness function rewarding both lifetime until a pure still life
solution and the total mass of end behavior solution scarcely ever
produced anything save for high period oscillators that were named
"wave oscillators" (Figure 2b), as they have bands that move up and
down the board in wave like patterns. This was marked as a trivial
solution despite its high period since its existence is only possible
due to the toroidal nature of the board.

The fitness function rewarding seeds that live longer before con-
verging to a period two oscillator solution and punishing high end
state mass predominantly evolved gliders (Figure 2c), small loco-
motive masses. However, none of the objective fitness functions
were able to evolve high period symmetrical oscillators as hoped.

(a) Blinker (b) Wave Oscillator (c) Glider

Figure 2: Examples of solutions generated by fitness functions 1,
2, and 3 respectively

When evolving the CPPNs using novelty search and the sparse-
ness metric, two new types of end behaviors emerged. Two unique
high period oscillators were evolved: one of period three named the
"pulsar" (Fig. 3a) and one of period 15 named the "pentadecathlon"
(Fig. 3b). See Section 5 for links to videos showcasing a visual-
ization of both the pulsar and the pentadecathlon. Although these
tests failed to produce purely novel or undocumented solutions, the
evolutionary computation produced seeds that had a significantly
higher lifetime than random seeds.

4. CONCLUSION
In this work evolving cellular automata seeds using CPPNs was

explored, expanding on extensive work done on finding organic
symmetries and repetitions using CPPNs for image grid process-
ing by Cheney, MacCurdy, and Clune et. al [2]. Unique high mass
high period oscillators were evolved, which is impressive in that

(a) Pulsar, period 3 (b) Pentadecathlon, period 15

Figure 3: Complex, high period oscillators, moved to the center of
the board for ease of viewing

this stems from a machine learning extension of a game that al-
ready attempts to model organic phenomena.

Regardless of the lack of novel and undocumented evolved so-
lutions, the results demonstrate that CPPNs can be used to richly
encode complex cellular automata seeds. Perhaps the best direction
for future study based on this finding is applying "quality diversity"
algorithms to try and evolve CPPNs in order to combine objective
and novelty search [5].

5. VIDEO LINKS

Video Link

Fitness Function 1 Example https://goo.gl/2Ouzw2
Fitness Function 2 Example https://goo.gl/YDAiGl
Fitness Function 3 Example https://goo.gl/ipta7L
Actual Pulsar Run https://goo.gl/P3ooPH
Actual Pentadecathlon Run https://goo.gl/KtkxXM
Normalized Pulsar https://goo.gl/5HW3hU
Normalized Pentadecathlon Run https://goo.gl/uPJZM9

Table 1: Video Links

6. REFERENCES
[1] O. Charif, R.-M. Basse, H. Omrani, and P. Trigano. Cellular

automata model based on machine learning methods for
simulating land use change. In O. Rose and A. M. Uhrmacher,
editors, Winter Simulation Conference, pages 163:1–163:12.
WSC, 2012.

[2] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson.
Unshackling evolution: Evolving soft robots with multiple
materials and a powerful generative encoding. SIGEVOlution,
7(1):11–23, Aug. 2014.

[3] J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone. Evol.
Comput., 19(2):189–223, June 2011.

[4] S. J. Louis and G. L. Raines. Genetic algorithm calibration of
probabilistic cellular automata for modeling mining permit
activity. In ICTAI, pages 515–519. IEEE Computer Society,
2003.

[5] J. K. Pugh, L. B. Soros, P. A. Szerlip, and K. O. Stanley.
Confronting the challenge of quality diversity. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, pages 967–974, New York, NY,
USA, 2015. ACM.

[6] K. O. Stanley. Compositional pattern producing networks: A
novel abstraction of development. Genetic Programming and
Evolvable Machines, 8(2):131–162, June 2007.

28




