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ABSTRACT

Many stochastic search algorithms require relearning if the task
changes slightly to adapt the solution to the new situation or the
new context. Therefore in this research, we investigate the contex-
tual stochastic search algorithms that can learn from multiple tasks
simultaneously. Here, we want to find good parameter vectors for
multiple related tasks, where each task is described by a continuous
context vector. Hence, the objective function might change slightly
for each parameter vector evaluation.

1. INTRODUCTION

Stochastic search algorithms are gradient-free black-box opti-
mizers of some performance function dependent on a high dimen-
sional parameter vector. Here, we directly evaluate the execution
of a parameter vector by using the return of an episode. Stochas-
tic search algorithms typically maintain a search distribution over
the parameters that we want to optimise. This search distribution
is used to create samples of the parameter vector. Subsequently,
the performance of the sampled parameters is evaluated. Using the
samples and their evaluations, a new search distribution is com-
puted. However, many of stochastic search algorithms can not be
applied for multi-task learning. Therefore if the task setup changes
slightly, relearning is needed to adapt the solution to the new sit-
uation or the new context. For example, consider optimising the
parameters of a robot arm controller to pick up an object. Once the
characteristics of the object, such as weight or material, changes,
relearning is needed. In order to generalize a solution for a context
to the other contexts, for example, picking up an object with dif-
ferent weights, the parameters can be optimized for several target
contexts independently. Subsequently, regression methods can be
used to generalize the optimized contexts to a new, unseen context.
However such approaches are time consuming and inefficient in
terms of the number of needed training samples as optimizing for
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different contexts and the generalization between optimized param-
eters for different contexts, are two independent processes. Hence,
we cannot reuse data-points obtained from optimizing a task with
context s to improve and accelerate the optimization of a task with
another context s’. Hence, it is desirable to learn the selection of
the parameter for multiple tasks at once without restarting the learn-
ing process once we see a new task. This problem setup is also
known as contextual policy search [1]. Recently, such multi-task
learning capability was established for information-theoretic policy
search algorithms [2], such as the episodic Relative Entropy Policy
Search (REPS) algorithm [1]. However, as many other stochastic
search algorithms, which update the search distribution, the search
distribution used in contextual REPS might collapse prematurely
to a point-estimate, resulting in premature convergence. In order
to alleviate this problem, we use a recently proposed regularization
technique for updating covariance matrices called CECER [3] for
updating the covariance matrix of contextual REPS. CECER has
been shown to be highly competitive to other stochastic optimiz-
ers. We call the resulting algorithm contextual CECER. On the
other hand, competing stochastic search algorithms, such as CMA-
ES [4] and NES, and commonly used policy search methods are
lacking this important contextual feature. Therefore, we also ex-
tend covariance matrix adaptation algorithm (CMA-ES) which is
the state of art algorithm in stochastic search to be applicable for
contextual setup which we refer to contextual CMA-ES. In order to
do that, we maintain a context dependent search distribution, where
the mean of this distribution now depends on the context. We use a
linear parametrization for the mean, i.e., the mean linearly depends
on a given context feature vector. In each iteration we update the
weights of this linear function as well as covariance matrix of the
search distribution. We compare these two algorithms along with
standard contextual REPS on standard functions.

1.1 Problem Statement

Given a context vector s which defines a task, we want to find
a function m(s) : R™ — R" that outputs a parameter vector
0 with n dimensions such that it maximizes an objective function
R(0,s) : {R",R™} — R. The only accessible information on
R(6, s) are evaluations {R[k] }r=1...n of samples {s[k]7 gl*l Ye=1..n,
where k is the index of the sample and N is number of samples. We
maintain a search distribution 7(60|s) over the parameter space 6
of the objective function R(0, s). The search distribution 7 (6|s)
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Figure 1: The performance comparison of stochastic search methods for optimising contextual version of standard functions
(a)Sphere and (b)Rastrigin, The results show that while both contextual CECER and contextual CMA-ES perform well, Contex-

tual REPS suffers from premature convergence.

is modeled as linear Gaussian policy, i.e.,
w(6]s) = N (6ma(s) = AT(s). 3x )

where ¢(8) is an arbitrary feature function of context s. In each
iteration, a new coefficient matrix A, and a new covariance ma-
trix X is obtained. Typically ¢(s) = [1 s], which results in
linear generalization over contexts. However we could use non-
linear feature functions such as radial basis functions(RBF) for non
linear generalization over contexts [5]. In each iteration, given con-
text samples s!*!!, the current search distribution ¢(8|s) is used to
create samples 01 of the parameter vector 6. Subsequently, the
evaluation Rl of {s[k], G[k]} is obtained by querying the objec-
tive function R(0, s). Now the samples {s[k], IR R[k]}kzl,,,N
are used to compute a weight d" for each sample k. Subsequently,
using {s[k], G[k], dl¥] }rk=1...v, a new Gaussian search distribution
m(0|s) is estimated. This process will run iteratively until the al-
gorithm converges to a solution.

2. EXPERIMENTS

We compare contextual CECER, contextual CMA-ES and the
standard contextual REPS algorithms. we use standard optimiza-
tion test functions, such as the Sphere and the Rastrigin (multi
modal) function. We extend these functions to be applicable for
contextual setting. The task is to find the optimum 15 dimensional
parameter vector € for a given 1 dimensional context s. We show
the average as well as two times the standard deviation of the re-
sults over 10 trials for each experiment. Note that the y-axis of all
plots is in a logarithmic scale.

2.1 Standard Optimization Test Functions

We chose two standard optimization functions which are the Sphere

function f(s,0) = >°7_, 22 and a multi-modal function which is
known as the Rastgirin function f(s,8) 10p + 3P [xF —
10 cos(2mx;)]. Where & = 6 + As. The matrix A is a constant
matrix that was chosen randomly. In our case, because the context
s is 1 dimensional, A is a n x 1 dimensional vector where n is the
dimension of parameter space 6. Now, the optimum 6 for these
functions is linearly dependent on the given context s. The initial

"Please note that the way we sample contexts st¥] depends on the
task. We consider scenarios where the context vector changes for
each sample. Typically we use a uniform distribution to sample

contexts s[k].
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search area of @ for all experiments is restricted to the hypercube
-5 < 60; <5,i=1,...,n and contexts are samples uniformly
from interval 0 < s; < 3,7 = 1,..., m where m is dimension
of the context space s. In our experiments, the mean of the initial
distributions have been chosen randomly in the defined search area.

Algorithmic Comparison.

We compared contextual CECER, contextual CMA-ES and stan-
dard contextual REPS. In each iteration, we generated 50 new sam-
ples. The results in figure 1 shows that both contextual CMA-
ES and contextual CECER could successfully learn the contextual
tasks while standard contextual REPS suffers from premature con-
vergence.

3. CONCLUSION

Stochastic search methods such as evolutionary strategies, e.g.
CMA-ES, have been employed extensively for black box optimiza-
tion. However, these algorithms fail to generalize the optimized
parameters to related tasks. Therefore, in this research, we investi-
gated contextual stochastic search methods for multi task learning.
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