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ABSTRACT

We introduce a multilevel mechanism into Evolution Strate-
gies (ESs) to address multigrid problems, which represent
real-world applications of extremely high dimensions pos-
sessing a multiscale nature (i.e., low-resolution variants pro-
vide coarser approximations to the original problem). ESs
may obtain fine solutions to the high-scale formulations only
within an impractically large number of objective function
calls, and we therefore devise a novel multilevel ES frame-
work to efficiently treat such problems. We propose an au-
tomated leveling-up scheme to facilitate guided-search over
increasingly finer levels of the optimization problem, which
terminates after a solution to the ultimate high-scale prob-
lem is attained. We instantiate the proposed multilevel self-
adaptive ES framework by two specific strategies: the elitist
single-child (1+1)-ES and the non-elitist multi-child deran-
domized (µW , λ)-sep-CMA-ES. We show that the proposed
approach is suited for targeting a global optimization prob-
lem which was heretofore viewed as too complex to address.
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1. MULTILEVEL EVOLUTION STRATEGY
Multigrid methods have been adjusted to global optimiza-

tion targets in order to devise multilevel (ML) solvers [2]
(not to be confused with ML in the sense of decomposition).
Relevant problems adhere to the following assumptions:
(i) The decision variables are defined on a 1D grid, or other-
wise may be arranged on such, (ii) The objective function is
well-defined per each grid-scale, and (iii) The model is static
in the sense that the objective function does not shift during
the course of optimization per each grid-scale.

Let an optimization model M be formulated over vari-
ous grid-scales (dimensions), {nℓ}, by means of minimiza-
tion problems {Pℓ : R

nℓ → R} that are all normalized with
a global minimum that reads a zero objective function value.
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The nℓ-dimensional feasible domain is denoted as Xℓ ⊆ R
nℓ .

Consider a self-adaptive ES, minimizing Pℓ at dimension
nℓ, employing a set of strategy parameters Sℓ. Note that
Sℓ may comprise in our consideration either a scalar for a
zeroth-order ES (the global-step-size σℓ ∈ R), or a vector in

the case of a first-order ES (individual step-sizes ~dℓ ∈ R
nℓ ).

The ES is deployed on Pℓ with a seed point ~x
(0)
ℓ ∈ Xℓ, aiming

to obtain up to a threshold ǫ with regard to the global mini-
mum (”ǫ-solving”). Consequently, this randomized heuristic
search outputs a minimizer ~x∗

ℓ ∈ Xℓ and an adapted strategy
Sℓ. We denote such a self-adaptive procedure by solveES.
The main idea of the proposed ML-ES is to iteratively in-
crease nℓ upon ǫ-solving each problem instance Pℓ. Each
iteration’s output, {~x∗

ℓ ,Sℓ}, is then leveled-up to the next
dimension nℓ+1 by means of a dedicated upscale operator,
except for the global step-size which is reduced by a factor
of

√

nℓ+1/nℓ. The adapted output becomes the following

iteration’s input,
{

~x
(0)
ℓ+1,Sℓ+1

}

, when ǫ-solving Pℓ+1.

The proposed approach is summarized as Algorithm 1, whose
leveling-up schedule is fixed, for simplicity, and set to a fac-
tor of υ. A straightforward treatment to the upscaling of

input : problemModel M, initialDim Ni, finalDim Nf

output : minimizer ~x∗ ∈ R
Nf

1 ℓ ← 1
2 nℓ ← Ni

3 ~x
(0)
ℓ ←randomInit(M, nℓ)

4 Sℓ ←initStrategy(M, nℓ)
5 while nℓ ≤ Nf do
6 Pℓ ←−formProblem(M, nℓ)
7 if ℓ > 1 then

8 ~x
(0)
ℓ ←upscale

(

~x∗

ℓ−1, nℓ

)

9 Sℓ \ {σℓ} ←upscale(Sℓ−1 \ {σℓ−1} , nℓ)

10 σℓ ← σℓ−1√
nℓ/nℓ−1

11 end

12

{

~x∗

ℓ ,Sℓ

}

←−solveES

(

Sℓ,Pℓ, ~x
(0)
ℓ , ǫ

)

13 if nℓ == Nf then return ~x∗

ℓ
14 else if υ · nℓ ≤ Nf then nℓ+1 ← υ · nℓ

15 else nℓ+1 ← Nf
16 ℓ ← ℓ+ 1
17 end

Algorithm 1: Multilevel ES with a fixed schedule.

the decision variables’ vectors is to conduct standard inter-
polation, while fixing the edges, as done in standard image
scaling on a 1D grid. We consider the following variants:
(U-1) Nearest neighbor: setting the value of the nearest
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sample grid point, (U-2) Linear: setting linear interpolants
between each pair of grid points, and (U-3) Cubic: setting
shape-preserving piecewise cubic interpolants based on the
neighboring grid points.

Theoretical results devising the optimal step-size for the
(1+1)-ES operating with the so-called 1/5th success-rule on
an nℓ-dimensional Sphere, are due to Rechenberg [1]:

σ∗

theory (~xℓ) ≈ 1.224
R (~xℓ)

nℓ
, (1)

where R (~xℓ) =
√

fSphere (~x). In the current ML perspective,
assuming that the decision variables are simply duplicated
per each leveling-up between nℓ to nℓ+1, the quadratic mod-
eling is subject to increasing the objective function value by
a factor of nℓ+1/nℓ. Since the optimal step-size is propor-
tional to R (~xℓ) /nℓ, the step σℓ+1 should be reduced by a

factor of
√

nℓ+1/nℓ in each leveling-up. Adhering to the
broad validity of the 1/5th rule [1], this argumentation jus-
tifies our step-size update scheme.

We instantiate the proposed ML approach by two ESs:
(I) ML-(1 + 1)-ES: employing σℓ with the 1/5th rule;

S
(1+1)-ES
ℓ = {σℓ}.

(II) ML-(µW , λ)-sep-CMA-ES: employing σℓ and ~dℓ;

S
(µW ,λ)-sepC
ℓ =

{

σℓ, ~dℓ
}

(thus resetting the evolution paths each leveling-up).
The recommended population sizing is utilized:
µℓ = ⌊λℓ/2⌋, λℓ = 4 + ⌊3 · log(nℓ)⌋.

2. EXPERIMENTAL OBSERVATION
Arranging a high-dimensional Sphere function on a 1D

grid serves as a proof-of-concept for examining the proposed
instantiations with Ni = 10 ❀ Nf = 104 (Figure 1). With-
out ML, the default variants required on average at least
4 · 105 function evaluations on Nf = 104. The ML variants
required on average 3 ∼ 4 · 104 evaluations across the differ-
ent upscaling realizations – obtaining a speed-up by a factor
of 10 in evaluations. Also, it is evident that the ML-(1+1)-
ES’ global step-size systematically follows the pattern of the
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Figure 1: ML-(1+ 1)-ES applied to fSphere with Ni =
10 ❀ Nf = 104, targeting a threshold of ǫ = 0.05 in a
log-log scale, employing (U-3), with vertical dashed
lines that represent each leveling. The theoretically-
optimal step-size σ∗

theory is calculated using Eq. (1).

optimal step-size while keeping a steady small gap; the ob-
served gap medians are 3.5 ∼ 6 · 10−5.

Next, we targeted a real-world application from non-linear
Optics, namely a simulation of two-photon absorption (TPA)
processes [3], with 214 variables (Figure 2). ML-(1 + 1)-ES
and ML-(µW , λ)-sep-CMA-ES performed best on fTPA when
operating with (U-1) (on average 3 ∼ 4 · 103 evaluations).
The default ESs were not run on the high grid-scale due
to the excessive computation time; when deployed on 210

variables, they required at least 4 ·104 evaluations. The pro-
posed ML approach successfully tackled grid-scales which
have never been handled heretofore and achieved a speed-
up by a factor of 10 with respect to the highest-scale treated.
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Figure 2: ML-(1 + 1)-ES [top] and ML-(µW , λ)-sep-
CMA-ES [bottom] applied to fTPA with Ni = 24 ❀

Nf = 214, targeting a threshold of ǫ = 0.05, both em-
ploying (U-1). Vertical dashed lines represent each
leveling. The objective function and global step-size
values are both log-scaled.
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