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Problem Statement Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Task: minimize an objective function (fitness function, loss
function) in continuous domain

f : X ✓ Rn ! R, x 7! f (x)

Black Box scenario (direct search scenario)

f(x)x

I gradients are not available or not useful
I problem domain specific knowledge is used only within the black

box, e.g. within an appropriate encoding
Search costs: number of function evaluations
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Problem Statement Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Goal
I fast convergence to the global optimum

. . . or to a robust solution x
I solution x with small function value f (x) with least search cost

there are two conflicting objectives

Typical Examples
I shape optimization (e.g. using CFD) curve fitting, airfoils
I model calibration biological, physical
I parameter calibration controller, plants, images

Problems
I exhaustive search is infeasible
I naive random search takes too long
I deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms
Anne Auger & Nikolaus Hansen CMA-ES July, 2014 4 / 815
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Problem Statement Black Box Optimization and Its Difficulties

Objective Function Properties
We assume f : X ⇢ Rn ! R to be non-linear, non-separable and to
have at least moderate dimensionality, say n 6⌧ 10.
Additionally, f can be

non-convex
multimodal

there are possibly many local optima
non-smooth

derivatives do not exist
discontinuous, plateaus
ill-conditioned
noisy
. . .

Goal : cope with any of these function properties
they are related to real-world problems
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Problem Statement Black Box Optimization and Its Difficulties

What Makes a Function Difficult to Solve?
Why stochastic search?

non-linear, non-quadratic, non-convex
on linear and quadratic functions much better

search policies are available

ruggedness
non-smooth, discontinuous, multimodal, and/or

noisy function

dimensionality (size of search space)
(considerably) larger than three

non-separability
dependencies between the objective variables

ill-conditioning
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Problem Statement Black Box Optimization and Its Difficulties

Ruggedness
non-smooth, discontinuous, multimodal, and/or noisy
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cut from a 5-D example, (easily) solvable with evolution strategies
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Problem Statement Black Box Optimization and Its Difficulties

Curse of Dimensionality
The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]10. To get similar
coverage in terms of distance between adjacent points requires
20

10 ⇡ 10

13 points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions
might be useless in moderate or large dimensional search spaces.
Example: exhaustive search.
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Problem Statement Non-Separable Problems

Separable Problems
Definition (Separable Problem)
A function f is separable if

arg min

(x

1

,...,x
n

)
f (x

1

, . . . , x

n

) =

✓
arg min

x

1

f (x
1

, . . .), . . . , arg min

x

n

f (. . . , x

n

)

◆

) it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively
decomposable functions

f (x
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, . . . , x

n
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nX
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Rastrigin function
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Problem Statement Non-Separable Problems

Non-Separable Problems
Building a non-separable problem from a separable one (1,2)

Rotating the coordinate system
f : x 7! f (x) separable
f : x 7! f (Rx) non-separable

R rotation matrix
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1Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). ”Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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Problem Statement Ill-Conditioned Problems

Ill-Conditioned Problems
Curvature of level sets
Consider the convex-quadratic function
f (x) = 1

2

(x�x⇤)TH(x�x⇤) = 1

2

P
i

h

i,i (xi

�x

⇤
i

)2+ 1

2

P
i6=j

h

i,j (xi

�x

⇤
i

)(x
j

�x

⇤
j

)
H is Hessian matrix of f and symmetric positive definite

gradient direction �f

0(x)T

Newton direction �H�1

f

0(x)T

Ill-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10

10

are not unusual in real world problems.

If H ⇡ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information (estimation
of H�1) is necessary.
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Problem Statement Ill-Conditioned Problems

What Makes a Function Difficult to Solve?
. . . and what can be done

The Problem Possible Approaches

Dimensionality exploiting the problem structure
separability, locality/neighborhood, encoding

Ill-conditioning second order approach
changes the neighborhood metric

Ruggedness non-local policy, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed

population-based method, stochastic, non-elitistic

recombination operator
serves as repair mechanism

restarts
. . . metaphors
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Problem Statement Ill-Conditioned Problems

Metaphors
Evolutionary Computation Optimization/Nonlinear Programming

individual, offspring, parent  ! candidate solution
decision variables
design variables
object variables

population  ! set of candidate solutions
fitness function  ! objective function

loss function
cost function
error function

generation  ! iteration

. . . methods: ESs
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Problem Statement

Landscape of Continuous Black-Box Optimization

18

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970] 
Simplex downhill [Nelder & Mead 1965] 
Pattern search [Hooke and Jeeves 1961] 
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain) 

Differential Evolution [Storn & Price 1997] 
Particle Swarm Optimization [Kennedy & Eberhart 1995] 
Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen & Ostermeier 2001] 
Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]  
Cross Entropy Method (same as EDA)  [Rubinstein, Kroese, 2004]  
Genetic Algorithms [Holland 1975, Goldberg 1989] 

Simulated annealing [Kirkpatrick et al. 1983] 
Simultaneous perturbation stochastic approximation (SPSA) [Spall 2000] 

Overview

19

➊ Problem Statement 
Continuous Black-Box Optimization 
Typical Difficulties 

➋ Stochastic Black-Box Algorithms 
General Template 
Invariance 
Comparisons of a few DFOs 

➌ Zoom on Evolution Strategies 
Step-size Adaptation 
Covariance Matrix Adaptation 

➍ Evaluating Black-Box Algorithms 
Displaying results and visualization  
Statistics 
Average Runtime 
Empirical Cumulative Distribution Function (ECDF) 

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : Rn ! R
Initialize distribution parameters ✓, set population size � 2 N
While not terminate

1 Sample distribution P (x|✓)! x
1

, . . . , x� 2 Rn

2 Evaluate x
1

, . . . , x� on f

3 Update parameters ✓  F✓(✓, x
1

, . . . , x�, f (x
1

), . . . , f (x�))

Everything depends on the definition of P and F✓

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined
via operators on a population, in particular, selection, recombination
and mutation
Natural template for (incremental) Estimation of Distribution Algorithms
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Stochastic Black-Box Algorithm General Template

Examples

all those methods are comparison based

21

1 Estimation of Distribution Algorithms

2 Evolution Strategies

3 Differential Evolution

4 Particle Swarm Optimization

Evolution Strategies (ES) A Search Template

Evolution Strategies

New search points are sampled normally distributed

x
i

⇠ m + � N
i

(0, C) for i = 1, . . . , �

as perturbations of m, where x
i

, m 2 Rn, � 2 R+, C 2 Rn⇥n

where
the mean vector m 2 Rn represents the favorite solution
the so-called step-size � 2 R+ controls the step length
the covariance matrix C 2 Rn⇥n determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and �.
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Evolution Strategies (ES) The Normal Distribution

Normal Distribution
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Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution
Any multi-variate normal distribution N (m,C) is uniquely determined by its mean
value m 2 Rn and its symmetric positive definite n ⇥ n covariance matrix C.

The mean value m

determines the displacement (translation)

value with the largest density (modal value)

the distribution is symmetric about the distribution
mean
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2−D Normal Distribution

The covariance matrix C

determines the shape

geometrical interpretation: any covariance matrix can be uniquely identified with
the iso-density ellipsoid {x 2 Rn | (x � m)TC�1(x � m) = 1}

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 20 / 8124

338



Evolution Strategies (ES) The Normal Distribution

. . . any covariance matrix can be uniquely identified with the iso-density ellipsoid
{x 2 Rn | (x � m)TC�1(x � m) = 1}

Lines of Equal Density

N
�
m,�2I

�
⇠ m + �N (0, I)

one degree of freedom �
components are
independent standard
normally distributed

N
�
m,D2

�
⇠ m + DN (0, I)

n degrees of freedom
components are
independent, scaled

N (m,C)⇠ m + C
1

2 N (0, I)
(n2 + n)/2 degrees of freedom

components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A ⇥N (0, I) ⇠ N

�
0,AAT

�
holds for all A.
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Evolution Strategies (ES) The Normal Distribution

The (µ/µ,�)-ES
Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution point x

i

= m + � N
i

(0, C)| {z }
=: y

i

= m + � y
i

Let x
i:� the i-th ranked solution point, such that f (x

1:�)  · · ·  f (x�:�).
The new mean reads

m 
µX

i=1

w

i

x
i:� = m + �

µX

i=1

w

i

y
i:�

| {z }
=: y

w

where

w

1

� · · · � wµ > 0,
Pµ

i=1

w

i

= 1, 1Pµ
i=1

w

i

2

=: µ
w

⇡ �
4

The best µ points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
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Evolution Strategies (ES) Invariance

Invariance Under Monotonically Increasing Functions
Rank-based algorithms
Update of all parameters uses only the ranks

f (x
1:�)  f (x

2:�)  ...  f (x�:�)

g(f (x
1:�))  g(f (x

2:�))  ...  g(f (x�:�)) 8g

g is strictly monotonically increasing
g preserves ranks3

3Whitley 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best,
ICGA
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Evolution Strategies (ES) Invariance

Basic Invariance in Search Space

translation invariance
is true for most optimization algorithms

f (x) $ f (x � a)

Identical behavior on f and fa

f : x 7! f (x), x(t=0) = x
0

fa : x 7! f (x � a), x(t=0) = x
0

+ a

No difference can be observed w.r.t. the argument of f
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Invariance Under Rigid Search Space Transformations
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f-level sets in dimension 2f = hRast f = h
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for example, invariance under search space rotation

(separable … non-separable)

f-level sets in dimension 2f = hRast ¶ R f = h ¶ R

Invariance Under Rigid Search Space Transformations

Evolution Strategies (ES) Invariance

Invariance
The grand aim of all science is to cover the greatest number of empirical facts by

logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein

Empirical performance results
I from benchmark functions
I from solved real world problems

are only useful if they do generalize to other problems

Invariance is a strong non-empirical statement about
generalization

generalizing (identical) performance from a single function to a whole
class of functions

consequently, invariance is important for the evaluation of search
algorithms
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Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE
f convex quadratic, separable with varying condition number ↵
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Ellipsoid dimension 20, 21 trials, tolerance 1e−09, eval max 1e+07

Condition number

S
P

1

NEWUOA 
BFGS 
DE2 
PSO 
CMAES 

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f (x) = g(xTHx) with
H diagonal
g identity (for BFGS and
NEWUOA)
g any order-preserving = strictly
increasing function (for all other)

SP1 = average number of objective function evaluations14 to reach the target function
value of g

�1(10

�9)

14Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE
f convex quadratic, non-separable (rotated) with varying condition number ↵
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BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f (x) = g(xTHx) with
H full
g identity (for BFGS and
NEWUOA)
g any order-preserving = strictly
increasing function (for all other)

SP1 = average number of objective function evaluations15 to reach the target function
value of g

�1(10

�9)

15Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Comparing Experiments

Comparison to BFGS, NEWUOA, PSO and DE
f non-convex, non-separable (rotated) with varying condition number ↵
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f (x) = g(xTHx) with
H full
g : x 7! x

1/4 (for BFGS and
NEWUOA)
g any order-preserving = strictly
increasing function (for all other)

SP1 = average number of objective function evaluations16 to reach the target function
value of g

�1(10

�9)

16Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Zoom On Evolution Strategies 

Zoom on ESs: Objectives
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Illustrate why and how sampling distribution is 
controlled 

step-size control (overall standard deviation) 
allows to achieve linear convergence 

covariance matrix control 
allows to solve ill-conditioned problems 
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Step-Size Control Why Step-Size Control

Why Step-Size Control?
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Step-Size Control Why Step-Size Control

Methods for Step-Size Control
1/5-th success ruleab, often applied with “+”-selection

increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

�-self-adaptationc, applied with “,”-selection

mutation is applied to the step-size and the better, according to the
objective function value, is selected

simplified “global” self-adaptation

path length controld (Cumulative Step-size Adaptation, CSA)e

self-adaptation derandomized and non-localized

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
cSchwefel 1981, Numerical Optimization of Computer Models, Wiley
dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.

9(2)
eOstermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN IV
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Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)
The Concept of Cumulative Step-Size Adaptation

x
i

= m + � y
i

m  m + �y
w

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

+
decrease �

+
increase �

loosely speaking steps are

perpendicular under random selection (in expectation)
perpendicular in the desired situation (to be most efficient)

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 40 / 8139

Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)
The Equations

Initialize m 2 Rn, � 2 R+, evolution path p� = 0,
set c� ⇡ 4/n, d� ⇡ 1.

m  m + �y
w

where y
w

=
Pµ

i=1

w

i

y
i:� update mean

p�  (1� c�) p� +
q

1� (1� c�)2

| {z }
accounts for 1�c�

p
µ

w|{z}
accounts for w

i

y
w

�  � ⇥ exp

✓
c�

d�

✓ kp�k
EkN (0, I) k � 1

◆◆

| {z }
>1 () kp�k is greater than its expectation

update step-size
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Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)
The Equations

Initialize m 2 Rn, � 2 R+, evolution path p� = 0,
set c� ⇡ 4/n, d� ⇡ 1.

m  m + �y
w

where y
w

=
Pµ

i=1

w

i

y
i:� update mean

p�  (1� c�) p� +
q

1� (1� c�)2

| {z }
accounts for 1�c�

p
µ

w|{z}
accounts for w

i

y
w

�  � ⇥ exp

✓
c�

d�

✓ kp�k
EkN (0, I) k � 1

◆◆

| {z }
>1 () kp�k is greater than its expectation

update step-size
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Step-Size Control Path Length Control (CSA)

(5/5, 10)-CSA-ES, default parameters

km
�

x⇤
k

f (x) =
nX

i=1

x

2

i

in [�0.2, 0.8]n

for n = 30
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Overview
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➊ Problem Statement 
Continuous Black-Box Optimization 
Typical Difficulties 

➋ Stochastic Black-Box Algorithms 
General Template 
Invariance 
Comparisons of a few DFOs 

➌ Zoom on Evolution Strategies 
Step-size Adaptation 
Covariance Matrix Adaptation 

➍ Evaluating Black-Box Algorithms 
Displaying results and visualization  
Statistics 
Average Runtime 
Empirical Cumulative Distribution Function (ECDF) 

Covariance Matrix Adaptation (CMA)

Evolution Strategies
Recalling

New search points are sampled normally distributed

x
i

⇠ m + � N
i

(0, C) for i = 1, . . . , �

as perturbations of m, where x
i

, m 2 Rn, � 2 R+, C 2 Rn⇥n

where
the mean vector m 2 Rn represents the favorite solution
the so-called step-size � 2 R+ controls the step length
the covariance matrix C 2 Rn⇥n determines the shape of
the distribution ellipsoid

The remaining question is how to update C.
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

initial distribution, C = I

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

initial distribution, C = I

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

y
w

, movement of the population mean m (disregarding �)

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

mixture of distribution C and step y
w

,
C 0.8⇥ C + 0.2⇥ y

w

yT

w

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

new distribution (disregarding �)

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

new distribution (disregarding �)

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

movement of the population mean m

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

mixture of distribution C and step y
w

,
C 0.8⇥ C + 0.2⇥ y

w

yT

w

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

new distribution,
C 0.8⇥ C + 0.2⇥ y

w

yT

w

the ruling principle: the adaptation increases the likelihood of
successful steps, y

w

, to appear again
another viewpoint: the adaptation follows a natural gradient
approximation of the expected fitness

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update
Initialize m 2 Rn, and C = I, set � = 1, learning rate c

cov

⇡ 2/n

2

While not terminate

x
i

= m + � y
i

, y
i

⇠ N
i

(0, C) ,

m  m + �y
w

where y
w

=
µX

i=1

w

i

y
i:�

C  (1� c

cov

)C + c

cov

µ
w

y
w

yT

w|{z}
rank-one

where µ
w

=
1Pµ

i=1

w

i

2

� 1

The rank-one update has been found independently in several domains6 7 8 9

6Kjellström&Taxén 1981. Stochastic Optimization in System Design, IEEE TCS
7Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix

adaptation, ICEC
8Ljung 1999. System Identification: Theory for the User
9Haario et al 2001. An adaptive Metropolis algorithm, JSTOR
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Evolution Strategies (ES) A Search Template

The CMA-ES
Input: m 2 Rn, � 2 R+, �
Initialize: C = I, and pc = 0, p� = 0,
Set: cc ⇡ 4/n, c� ⇡ 4/n, c

1

⇡ 2/n

2, cµ ⇡ µ
w

/n

2, c

1

+ cµ  1, d� ⇡ 1 +
pµ

w

n

,
and w

i=1...� such that µ
w

= 1Pµ
i=1

w

i

2

⇡ 0.3 �

While not terminate
x

i

= m + � y
i

, y
i

⇠ N
i

(0, C) , for i = 1, . . . , � sampling

m Pµ
i=1

w

i

x
i:� = m + �y

w

where y
w

=
Pµ

i=1

w

i

y
i:� update mean

pc  (1� cc) pc + 1I{kp�k<1.5
p

n}
p

1� (1� cc)2

p
µ

w

y
w

cumulation for C

p�  (1� c�) p� +
p

1� (1� c�)2

p
µ

w

C� 1

2 y
w

cumulation for �

C (1� c

1

� cµ) C + c

1

pc pc
T + cµ

Pµ
i=1

w

i

y
i:�yT

i:� update C

�  � ⇥ exp

⇣
c�
d�

⇣
kp�k

EkN(0,I)k � 1

⌘⌘
update of �

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding
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CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (0)
What did we want to achieve?

reduce any convex-quadratic function

f (x) = xTHx

e.g. f (x) =
P

n

i=1

10

6

i�1

n�1

x

2

i

to the sphere model
f (x) = xTx

without use of derivatives

lines of equal density align with lines of equal fitness

C / H�1

in a stochastic sense
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CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (1)
f convex quadratic, separable

0 2000 4000 6000
10−10

10−5

100

105

1010

1e−05

1e−08
f=2.66178883753772e−10

blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio

0 2000 4000 6000
−5

0

5

10

15

x(3)=−6.9109e−07

x(4)=−3.8371e−07

x(5)=−1.0864e−07
x(9)=2.741e−09

x(8)=4.5138e−09

x(7)=2.7147e−08
x(6)=5.6127e−08

x(2)=2.2083e−06
x(1)=3.0931e−06

Object Variables (9−D)

0 2000 4000 6000
10−4

10−2

100

102
Principle Axes Lengths

function evaluations
0 2000 4000 6000

10−4

10−2

100

102

 9

 8

 7
 6

 5

 4
 3

 2
 1

Standard Deviations in Coordinates divided by sigma

function evaluations

f (x) =
P

n

i=1

10

↵ i�1

n�1

x

2

i

, ↵ = 6
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CMA-ES Summary The Experimentum Crucis

Experimentum Crucis (2)
f convex quadratic, as before but non-separable (rotated)

0 2000 4000 6000
10−10

10−5

100

105

1010

8e−062e−06

f=7.91055728188042e−10

blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio

0 2000 4000 6000
−4

−2

0

2

4

x(8)=−2.6301e−06

x(2)=−2.1131e−06
x(3)=−2.0364e−06
x(7)=−8.3583e−07
x(4)=−2.9981e−07
x(9)=−7.3812e−08
x(6)=1.2468e−06
x(5)=1.2552e−06
x(1)=2.0052e−06

Object Variables (9−D)

0 2000 4000 6000
10−4

10−2

100

102
Principle Axes Lengths

function evaluations
0 2000 4000 6000

100

 4

 9
 6
 5
 7
 2
 8
 1
 3

Standard Deviations in Coordinates divided by sigma

function evaluations

C / H�1 for all g, H

f (x) = g

�
xTHx

�
, g : R ! R stricly increasing
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➋ Stochastic Black-Box Algorithms 
General Template 
Invariance 
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Performance Evaluation Subsection

Evaluation of Anytime Black-Box Optimizers

60

Particularly Randomized Search Algorithms

Randomized optimization is mostly an empirical science 
  
Hence it is crucial to properly conduct numerical 
experiments and assess performance 

to not fool ourself on what our favorite algorithm is 
good/not good at 

in order to not fool others … 

“The first principle is that you must not fool yourself and 
you are the easiest person to fool.”  
Richard P. Feynman
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Performance Evaluation Subsection

Evaluation of Anytime Black-Box Optimizers

61

Particularly Randomized Search Algorithms

Evaluation of performance in a broad sense 

not only be able to say “Algorithm A is better than B” 

but 

understand where and why algorithm work 

quantify performance  

Performance Evaluation Subsection

Measuring Performance

62

Empirically 

convergence graphs is all we have to start with 

having the right presentation is important  
too often neglected 

the details are important

Performance Evaluation Presenting Convergence Graphs

Displaying Three Runs

63

Performance Evaluation Presenting Convergence Graphs

Displaying Three Runs

64

348



Performance Evaluation Presenting Convergence Graphs

Displaying Three Runs

65

Performance Evaluation Presenting Convergence Graphs

Displaying 51 Runs

66

Performance Evaluation Visualization

Visualization

67

Other data than convergence graphs can be very 
instructive to  visualize to understand performance 

Example:  
visualization of evolution of distribution in CMA-ES 
(see next slide)

Performance Evaluation Visualization

68
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Performance Evaluation Which Statistics?

Which Statistics?

69

Performance Evaluation Which Statistics?

Which Statistics?

70

Performance Evaluation Which Statistics?

Which Statistics?

71

Performance Evaluation Which Statistics?

Which Statistics?

72
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Performance Evaluation Which Statistics?

Which Statistics?

73

Performance Evaluation Which Statistics?

Implication

74

use the median as summary datum 

more general: use quantiles as summary data 
for example out of 15 data: 2nd, 8th, and 14th value 

represent the 10%, 50%, and 90%-tile 

unless there are good reasons for a different statistics 

Performance Evaluation Which Statistics?

Examples

75

Performance Evaluation Statistical Assessment

Statistical Assessment

76

 ➊   Assess the meaning/relevance of a difference first (the 
only difficult part) 

using enough data, any difference  
can be made significant 
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Performance Evaluation Statistical Assessment

Statistical Assessment

77

 ➋   Apply rank-sum test (Wilcoxon, Mann-Whitney U) 
only assumption: no equal data values 

hypothesis: 

compares sum of ranks in a combined ranking 

two-sided 1%-significance p-value needs only 2x5 
data values 

For the same p-value, fewer significant data are better 
using enough data, any difference  

can be made significant 
Generally: non-parametric tests, Kolmogorov-Smirnov test 
for ECDFs, no need to use the t-test  

Pr(x > y) 6= Pr(x < y) 6= 1/2

Overview
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Performance Evaluation Fixed cost versus Fixed Target

79

Performance Evaluation

Evaluation of Search Algorithms
Behind the scene

80

a performance should be 
quantitative on the ratio scale (highest possible)  

“algorithm A is two times better than algorithm B” is a 
meaningful statement 

can assume a wide range of values 

meaningful (interpretable) with regard to the real world  
possible to transfer from benchmarking to real world 

runtime or first hitting time is the prime candidate (we don't 
have many choices anyway)

On performance measure
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Performance Evaluation On performance measure

Collect Runtime to reach F-target

81

Performance Evaluation

Which Performance Measure

82

On performance measure

Performance Evaluation

Which Performance Measure

83

On performance measure Performance Evaluation

Average Runtime (aRT)

84

ERT = E[RTr] = 1�ps
ps

E[RTunsuccessful] + E[RTsuccessful]

aRT is an estimator for ERT

aRT =
#Evals

#success

On performance measure
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Single Target

Performance Evaluation

Empirical Cumulative Distribution Function
Empirical Cumulative Distribution Function

87

Several Targets

Performance Evaluation

Empirical Cumulative Distribution Function
Empirical Cumulative Distribution Function

88

Performance Evaluation

Empirical Cumulative Distribution Function
Empirical Cumulative Distribution Function
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89

15 runs integrated  
in a single graph

Performance Evaluation

Empirical Cumulative Distribution Function
Empirical Cumulative Distribution Function

90

Performance Evaluation

Empirical Cumulative Distribution Function
Empirical Cumulative Distribution Function
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