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ABSTRACT
Previous studies have shown the efficiency of using quasi-
random mutations on the well-know CMA evolution strat-
egy [13]. Quasi-random mutations have many advantages,
in particular their application is stable, efficient and easy
to use. In this article, we extend this principle by applying
quasi-random mutations on several well known continuous
evolutionary algorithms (SA, CMSA, CMA) and do it on
several old and new test functions, and with several crite-
ria. The results point out a clear improvement compared
to the baseline, in all cases, and in particular for moderate
computational budget.

1. INTRODUCTION: DERANDOMIZED
EVOLUTIONARY ALGORITHMS

Several works have been devoted to the derandomization
of evolutionary algorithms, typically using quasi-random
(QR) methods. QR numbers are designed in order to
be more uniformly distributed than classic pseudo-random
numbers. We here focus on the continuous case. Some works
apply QR sequences for the initialization of the individuals
[7] or for the mutations [1, 14]. [13] pointed out that QR
mutations are moderately better than pseudo-random ones
in several settings. Inspired by [8], [13] concluded that in
order to have good QR mutations it is important to have
good QR sequences. This is particularly true for optimiza-
tion of strongly multimodal functions [4, 13]. Another ap-
plication of QR sequences is for restarts algorithms [12] ; in
this article, authors show that QR restarts outperform clas-
sic restart algorithms for multi-modal optimization. In this
article, we point out the generality of the use of QR mu-
tations by extending results from [14] to more algorithms,
including CMSA and SA. We also discuss various criteria
and include new highly multimodal objective functions. Re-
cently, [2] experiments several algorithms on the CEC2015
testbed and notes that all algorithms which perform the best
are the ones with QR mutations.
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2. ALGORITHMS
Generating quasi-random sequences in the square [0, 1]N

is classical, many toolboxes can be found on the web.
Converting from the uniform distribution in [0, 1]N to
the standard Gaussian distribution can be done by
composition, coordinate-wise, with the inverse cumu-
lative distribution function of the standard Gaussian;
in Octave/Matlab notation, quasiRandomGaussian =
norminv(quasiRandomInThe01Interval). More details
around this can be found in [14].

Our modification is generic, in the sense that it can be ap-
plied to many evolution strategies. QRCMA refers to CMA
with quasi-random mutations. QRSA refers to SA with
quasi-random mutations. QRCMSA refers to CMSA with
quasi-random mutations. SA is defined in [9, 10]. CMA and
CMSA are respectively defined in [6] and [3]. We also use
the (1 + 1)-ES with one-fifth rule, multiplying the step-size

by 1.5 in case of success and dividing by 1.5
1
4 otherwise.

3. OBJECTIVE FUNCTIONS
In this study we experiment 4 unimodel functions (sphere,

cigar, Ellipsoid and Schwefel) and 8 multimodal functions
(Griewank, Rastrigin, Schaffer, Hump, Nsine, Randcuts and
Randsines). The Schwefelmult function has been rescaled
(frescaled(x) = f(100x)) so that its range matches the usual
range of other functions. These functions are basically the
same as in the CMAES source code, except that the Schwe-
felMult function is rescaled by a factor 100 so that its rel-
evant range is similar to the one of other functions. The
hump function [11] has been slightly modified (the optima
are distributed as a Gaussian random variable with stan-
dard deviation 5 and one of the optimum has been slightly
improved so that there is a unique optimum. The Nsine
function [5] has been slightly modified so that the opti-
mum is unique. The randcut function is defined as f(x) =
30∑
i=1

3bi(ai.(xi − x∗i ) − bai.(xi − x∗i )c)2) +
N ||x||2

10000
and the

randsines as f(x) =

30∑
i=1

3bisin(ai.(xi−x∗i ))2 +
N ||x− x∗||2

10000

4. EXPERIMENTS
In all our experiments, we measure (i) the simple regret,

i.e. the fitness at the proposed individual minus the fitness
at the optimum (ii) for various thresholds ε, the frequency at
which the simple regret was greater than ε. All experiments
are reproduced 99 times, moreover, in order to improve the
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statistical significance, for all functions which have a random
optimum, the 99 randomly drawn optima are the same for
all algorithms (statistical pairing). The starting point is 0,
and the optimum is randomly drawn, for each coordinate, as
U([−2, 2]) +σN, where U(I) is the uniform random variable
on interval I, N is the standard Gaussian random variable,
and σ = 3 is the initial step-size used in all algorithms.

Because of space limitations, results are in http://www.
lri.fr/˜teytaud/qrr.pdf.

Additional results and downloads
The experiments were reproduced with random full rota-
tions (built with Gram-Schmidt transformation) without
changing the results (figures available at http://www.lri.fr/
˜teytaud/withrot.pdf, except for some functions, in the case
of the results with highest precision and lowest dimension -
for the Cigar function in dimension 5 and 10, CMA and
CMA(r) perform better without restarts for the frequency
of solving with precision 1 (all other results are preserved).

5. CONCLUSION
Previous results have shown that CMA is improved by QR

mutations on BBOB. We here extend these results to

• more algorithms (CMSA, SA, CMA, and CMA with
restarts), showing that QR works in most cases;

• additional functions, showing a bigger difference on
highly multimodal functions.

CMA(R) (CMA with restarts), CMA, SA and CMSA are
tested with random mutations and with quasi-random mu-
tations. QR typically brings a significant improvement -
there are cases in which the use of quasi-random numbers
is the main difference between tested algorithms, i.e. all
ES with QR outperform all ES without QR. Some mul-
timodal functions from the global optimization literature
(such that the hump and the NSine functions), challeng-
ing and not that usual in testbeds, and new multimodal
functions have been included in tests, as well as randomly
constructed multimodal functions - with these highly mul-
timodal functions (hump, Schaffer, SchwefelMult, Random-
Cuts, RandomSines) QR sometimes switches from 80% fail-
ure to a negligible proportion of failure.

Furtherwork. Restarts should also benefit from quasi-
random numbers; this is left as further work. SchwefelMult
is an interesting stable counterexample - CMA outperforms
QRCMA in a stable manner - this is not explained.
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