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Outline

Model-Based Evolutionary Algorithms (MBEA)

◮ Introduction

◮ Part I: Discrete Representation

◮ Part II: Real-Valued, Permutation, and Program
Representations
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What ?

Evolutionary Algorithms

◮ Population-based, stochastic search algorithms

◮ Exploitation: selection

◮ Exploration: mutation & crossover

Model-Based Evolutionary Algorithms

◮ Population-based, stochastic search algorithms

◮ Exploitation: selection

◮ Exploration:

1. Learn a model from selected solutions
2. Generate new solutions from the model (& population)
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What ?

Model-Based Evolutionary Algorithms (MBEA)

◮ a.k.a. Estimation of Distribution Algorithms (EDAs)

◮ a.k.a. Probabilistic Model-Building Genetic Algorithms

◮ a.k.a. Iterated Density Estimation Evolutionary Algorithms

MBEA = Evolutionary Computing + Machine Learning

Note: model not necessarily probabilistic
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Why ?

Goal: Black Box Optimization

◮ Little known about the structure of the problem

◮ Clean separation optimizer from problem definition

◮ Easy and generally applicable

Approach

* Classical EAs: need suitable representation & variation
operators

* Model-Based EAs: learn structure from good solutions
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Discrete Representation

◮ Typically binary representation

◮ Higher order cardinality: similar approach
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Probabilistic Model-Building Genetic Algorithm

Type of Models

◮ Univariate: no statistical interaction between variables
considered.

◮ Bivariate: pairwise dependencies learned.

◮ Multivariate: higher-order interactions modeled.
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Univariate PMBGA

Model

* Model: probability vector [p1, ... , pℓ] (ℓ: string length)

* pi : probability of value 1 at string position i

* p(X ) =
∏

ℓ

i=1 p(xi ) (p(xi ): univariate marginal distribution)

◮ Learn model: count proportions of 1 in selected population

◮ Sample model: generate new solutions with specified
probabilities
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Univariate PMBGA

Different Variants

◮ PBIL (Baluja; 1995)
◮ Prob. vector incrementally updated over successive generations

◮ UMDA (Mühlenbein, Paass; 1996)
◮ No incremental updates: example above

◮ Compact GA (Harik, Lobo, Goldberg; 1998)
◮ Models steady-state GA with tournament selection

◮ DEUM (Shakya, McCall, Brown; 2004)
◮ Uses Markov Random Field modeling
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A hard problem for the univariate FOS

Data

000000
111111
010101
101010
000010
111000
010111
111000
000111
111111

Marginal Product (MP) FOS

P̂(X0X1X2) P̂(X3X4X5)

000 0.3 0.3
001 0.0 0.0
010 0.2 0.2
011 0.0 0.0
100 0.0 0.0
101 0.1 0.1
110 0.0 0.0
111 0.4 0.4

Univariate FOS

P̂(X0) P̂(X1) P̂(X2) P̂(X3) P̂(X4) P̂(X5)

0 0.5 0.4 0.5 0.5 0.4 0.5
1 0.5 0.6 0.5 0.5 0.6 0.5

◮ What is the probability of generating 111111?

◮ Univariate FOS: 0.5 · 0.6 · 0.5 · 0.5 · 0.6 · 0.5 = 0.0225

◮ MP FOS: 0.4 · 0.4 = 0.16 (7 times larger!)
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Learning problem structure on the fly

◮ Without a “good” decomposition of the problem, important
partial solutions (building blocks) are likely to get disrupted in
variation.

◮ Disruption leads to inefficiency.

◮ Can we automatically configure the model structure favorably?

◮ Selection increases proportion of good building blocks and
thus “correlations” between variables of these building blocks.

◮ So, learn which variables are “correlated”.

◮ See the population (or selection) as a data set.

◮ Apply statistics / probability theory / probabilistic modeling.
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Bivariate PMBGA

Model

◮ Need more than just probabilities of bit values

◮ Model pairwise interactions: conditional probabilities

◮ MIMIC (de Bonet, Isbell, Viola; 1996)
◮ Dependency Chain

◮ COMIT (Baluja, Davies; 1997)
◮ Dependency Tree

◮ BMDA (Pelikan , Mühlenbein; 1998)
◮ Independent trees (forest)
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Bivariate PMBGA

MIMIC

◮ Model: chain of pairwise dependencies.

◮ p(X ) =
∏

ℓ−1
i=1 p(xi+1|xi )p(x1).

◮ MIMIC greedily searches for the optimal permutation of
variables that minimizes Kullack-Leibler divergence.
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Bivariate PMBGA

COMIT

◮ Optimal dependency tree instead of linear chain.

◮ Compute fully connected weighted graph between problem
variables.

◮ Weights are the mutual information I (X ,Y ) between the
variables.

◮ I (X ,Y ) =
∑

y∈Y

∑

x∈X p(x , y) log p(x ,y)
p(x)p(y) .

◮ COMIT computes the maximum spanning tree of the
weighted graph.
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Bivariate PMBGA

BMDA

◮ BMDA also builds tree model.

◮ Model not necessarily fully connected: set of trees or forrest.

◮ Pairwise interactions measured by Pearson’s chi-square
statistics.
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Bivariate PMBGA

DSMGA

◮ Dependency Structure Matrix Genetic Algorithm (Yu,
Goldberg, Sastry, Lima, Pelikan; 2009)

◮ Dependency Structure Matrix (DSM) contains the information
of pairwise interactions.

◮ DSMGA constructs the DSM by using mutual information
metric.

◮ DSM clustering aims to transfer the pair-wise interaction
information into higher-order interaction information.

◮ DSM Clustering Metric based on the minimum description
length principle (MDL).
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Multivariate PMBGA

Marginal Product Model

◮ Extended Compact GA (ECGA) (Harik; 1999) was first EDA
going beyond pairwise dependencies.

◮ Greedily searches for the Marginal Product Model that
minimizes the minimum description length (MDL).

◮ p(X ) =
∏G

g=1 p(Xg )

◮ Choose the probability distribution with the lowest MDL score.

◮ Start from simplest model: the univariate factorization.

◮ Join two groups that result in the largest improvement in the
used scoring measure.

◮ Stop when no joining of two groups improves the score further.
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Multivariate PMBGA

Minimum Description Length (MDL)

◮ MDL(M,D) = DModel + DData

◮ Best factorization = the one with the lowest MDL score.

◮ MDL is a measure of complexity.

1. Compressed population complexity: how well the population is
compressed by the model (measure of goodness of the
probability distribution estimation).

2. Model complexity: the number of bits required to store all
parameters of the model.
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Multivariate PMBGA

Learning MP model

1. Start from univariate FOS:
{{0}, {1}, {2}, ... , {l − 2}, {l − 1}}

2. All possible pairs of partitions are temporarily merged:
{{0, 1}, {2}, ... , {l − 2}, {l − 1}}
{{0, 2}, {1}, ... , {l − 2}, {l − 1}}

...
{{0}, {1, 2}, ... , {l − 2}, {l − 1}}

...
{{0}, {1}, {2}, ... , {l − 2, l − 1}}

3. Compute MDL score of each factorization.

4. Choose the best scoring factorization if better than current.

5. Repeat until no better scoring factorization is found.
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Multivariate PMBGA

Bayesian Network

◮ Probability vector, dependency tree, and marginal product
model are limited probability models.

◮ Bayesian network much more powerful model.
◮ Acyclic directed graph.
◮ Nodes are problem variables.
◮ Edges represent conditional dependencies.

389



Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 20/110

Multivariate PMBGA
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Multivariate PMBGA

Bayesian network learning

◮ Similar to ECGA: scoring metric + greedy search

◮ Scoring metric: MDL or Bayesian measure

◮ Greedy search:
◮ Initially, no variables are connected.
◮ Greedily either add, remove, or reverse an edge between two

variables.
◮ Until local optimum is reached.
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Multivariate PMBGA

Bayesian Network PMBGAs variants

◮ Bayesian Optimization Algorithm (BOA)
(Pelikan, Goldberg, Cantú-Paz; 1998)

◮ Estimation of Distribution Networks Algorithm (EBNA)
(Etxeberria, Larrañaga; 1999)

◮ Learning Factorized Distribution Algorithm (LFDA)
(Mühlenbein, Mahnig, Rodriguez; 1999)

◮ Similarities: All use Bayesian Network as probability model.

◮ Dissimilarities: All use different method to learn BN.
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Hierarchical BOA

◮ hBOA (Pelikan, Goldberg; 2001)

◮ Decomposition on multiple levels.
◮ Bayesian network learning by BOA

◮ Compact representation.
◮ Local Structures to represent conditional probabilities.

◮ Preservation of alternative solutions.
◮ Niching with Restricted Tournament Replacement
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Multivariate PMBGA

Markov Network

◮ Markov Netwok EDA
(MN-EDA: Santana, 2005) (DEUM: Shakya & McCall, 2007).

◮ Probability model is undirected graph.

◮ Factorise the joint probability distribution in cliques of the
undirected graph and sample it.

◮ Most recent version: Markovian Optimisation Algorithm
(MOA) (Shakya & Santana, 2008).

◮ MOA does not explicitly factorise the distribution but uses the
local Markov property and Gibbs sampling to generate new
solutions.
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Family Of Subsets (FOS) model

FOS F

◮ PMBGAs learn a probabilistic model of good solutions to
match the structure of the optimization problem

◮ Key idea is to identify groups of problem variables that
together make an important contribution to the quality of
solutions.

◮ Dependency structure generally called a Family Of Subsets
(FOS).

◮ Let there be ℓ problem variables x0, x1, ... , xℓ−1.

◮ Let S be a set of all variable indices {0, 1, ... , ℓ− 1}.

◮ A FOS F is a set of subsets of the set S.

◮ FOS F is a subset of the powerset of S (F ⊆ P(S)).
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Family Of Subsets (FOS) model

◮ FOS can be written more specifically as:

F = {F0,F1, ... ,F|F|−1}

where
Fi ⊆ {0, 1, ... , l − 1}, i ∈ {0, 1, ... , |F| − 1}

◮ Every variable is in at least one subset in the FOS, i.e.:

∀i ∈ {0, 1, ... , l − 1} :
(

∃j ∈ {0, 1, ... , |F| − 1} : i ∈ Fj
)
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The Univariate Structure

◮ The univariate FOS is defined by:

Fi = {i}, i ∈ {0, 1, ... , l − 1}

◮ For l = 10 the univariate FOS is:

F = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}

◮ Every variable is modeled to be independent of other
varibables.
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The Marginal Product Structure

◮ The marginal product (MP) FOS is a FOS such that:

Fi ∩ Fj = ∅, i , j ∈ {0, 1, ... , l − 1}.

◮ Univariate FOS is a MP FOS.

◮ For l = 10 a possible MP FOS is:

F = {{0, 1, 2}, {3}, {4, 5}, {6, 7, 8, 9}}

◮ Every group of variables is modeled to be independent of
other variables.
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The Linkage Tree Structure

◮ The linkage tree (LT) FOS is a hierarchical structure.

◮ Group of all variables is in there.

◮ For any subset Fi with more than one variable, there are
subsets Fj and Fk such that:

Fj ∩ Fk = ∅, |Fj | < |Fi |, |Fk | < |Fi | and Fj ∪ Fk = Fi

◮ For l = 10 a possible LT FOS is

F = {{7, 5, 8, 6, 9, 0, 3, 2, 4, 1},

{7, 5, 8, 6, 9}, {0, 3, 2, 4, 1}, {7}, {5, 8, 6, 9},

{0, 3, 2, 4}, {1}, {5, 8, 6}, {9}, {0, 3}, {2, 4},

{5, 8}, {6}, {0}, {3}, {2}, {4}, {5}, {8}}

◮ Variables sometimes independent, sometimes dependent.

◮ ≈ Path through dependency space, from univariate to joint.
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Linkage Tree

◮ Linkage Tree structure: subsets of FOS F form a hierarchical
clustering.

◮ F = {{0,1,2,3,4,5,6,7,8,9}, {0,1,2,3,4,5}, {6,7,8,9}, {0,1,2},
{3,4,5}, {7,8,9}, {0,1}, {4,5}, {8,9}, {0}, {1}, {2}, {3},
{4}, {5}, {6}, {7}, {8}, {9}}

◮ Each subset (of length > 1) is split in two mutually exclusive
subsets.

◮ Problem variables in subset are considered to be dependent on
each other but become independent in a child subset.

◮ For a problem of length ℓ the linkage tree has ℓ leaf nodes
(the clusters having a single problem variable) and ℓ− 1
internal nodes.
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Linkage Tree Learning

◮ Start from univariate structure.

◮ Build linkage tree using bottom-up hierarchical clustering
algorithm.

◮ Similarity measure:

1. Between individual variables X and Y : mutual information
I (X ,Y ).

2. Between cluster groups XF i and XF j : average pairwise linkage
clustering (= unweighted pair group method with a arithmetic
mean: UPGMA).

IUPGMA(XF i ,XF j ) =
1

|XF i ||XF j |

∑

X∈X
F i

∑

Y∈X
F j

I (X ,Y ).
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Linkage Tree Learning

◮ This agglomerative hierarchical clustering algorithm is
computationally efficient.

◮ Only the mutual information between pairs of variables needs
to be computed once, which is a O(ℓ2) operation.

◮ The bottom-up hierarchical clustering can also be done in
O(ℓ2) computation by using the reciprocal nearest neighbor

chain algorithm.
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Optimal Mixing Evolutionary Algorithms (OMEA)

◮ OMEA is a Model-Building EA that uses a FOS as its linkage
model (Thierens & Bosman, 2011).

◮ Characteristic of Optimal Mixing Evolutionary Algorithm
(OMEA) is the use of intermediate function evaluations
(inside variation)

◮ Can be regarded as greedy improvement of existing solutions

◮ Coined “Optimal” Mixing because better instances for
substructures are immediately accepted and not dependent on
“noise” coming from other parts of the solution

◮ Recombinative OM (ROM) and Gene-pool OM (GOM)
◮ ROM is GA-like: select single solution to perform OM with
◮ GOM is EDA-like: select new solution for each substructure in

OM
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Optimal Mixing EA (GOMEA)

◮ FOS linkage models specify the linked variables.

◮ A subset of the FOS is used as crossover mask

◮ Crossover is greedy: only improvements (or equal) are
accepted.

◮ Each generation a new FOS model is build from selected
solutions.

◮ For each solution in the population, all subsets of the FOS are
tried with a donor solution randomly picked from the
population

◮ Recombinative OM (ROM) and Gene-pool OM (GOM)
◮ ROMEA: each solution uses a single donor solution.
◮ GOMEA: new donor selected for each FOS subset.

Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 35/110

Gene-pool Optimal Mixing EA

GOMEA()

Pop ← InitPopulation()

while NotTerminated(Pop)

FOS ← BuildFOS(Pop)

forall Sol ∈ Pop

forall SubSet ∈ FOS

Donor ← Random(Pop)

Sol ← GreedyRecomb(Sol,Donor,Subset,Pop)

return Sol

GreedyRecomb(Sol,Donor,SubSet,Pop)

NewSol ← ReplaceSubSetValues(Sol,SubSet,Donor)

if ImprovementOrEqual(NewSol,Sol)

then Sol ← NewSol

return Sol
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Recombinative Optimal Mixing EA

ROMEA()

Pop ← InitPopulation()

while NotTerminated(Pop)

FOS ← BuildFOS(Pop)

forall Sol ∈ Pop

Donor ← Random(Pop)

forall SubSet ∈ FOS

Sol ← GreedyRecomb(Sol,Donor,Subset,Pop)

return Sol

GreedyRecomb(Sol,Donor,SubSet,Pop)

NewSol ← ReplaceSubSetValues(Sol,SubSet,Donor)

if ImprovementOrEqual(NewSol,Sol)

then Sol ← NewSol

return Sol
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Linkage Tree Genetic Algorithm

◮ The LTGA is an instance of GOMEA that uses a Linkage Tree
as FOS model (Thierens & Bosman, 2010, 2011).

◮ Each generation a new hierarchical cluster tree is build.

◮ For each solution in population, traverse tree starting at the
top.

◮ Nodes (= clusters) in the linkage tree used as crossover
masks.

◮ Select random donor solution, and its values at the crossover
mask replace the variable values from the current solution.

◮ Evaluate new solution and accept if better/equal, otherwise
reject.
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Deceptive Trap Function

Interacting, non-overlapping, deceptive groups of variables.

fDT(x) =
l−k
∑

i=0

f sub
DT

(

x(i ,...,i+k−1)

)
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Nearest-neighbor NK-landscape

◮ Overlapping, neighboring random subfunctions

fNK-S1(x) =
l−k
∑

i=0

f sub
NK

(

x(i ,...,i+k−1)

)

with f sub
NK

(

x(i ,...,i+k−1)

)

∈ [0..1]

◮ eg. 16 subsfcts, length k = 5, overlap o = 4 ⇒ stringlength
ℓ = 20

0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1

◮ Global optimum computed by dynamic programming

◮ Benchmark function: structural information is not known !

◮ ⇒ Randomly shuffled variable indices.
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Experiments
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Experiments
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Experiments
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Hierarchical Trap function

HTrap

◮ Combine deceptive trap functions at each level in tree.

◮ Balanced k−ary tree

◮ Internal nodes are 0 (resp. 1) if all their children are 0 (resp.
1).

◮ Global optimum is all ones, yet at each level search is biased
towards zeroes.
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Hierarchical Trap function

HTrap: LTGA and hBOA

◮ HTrap problems:
block length k = 3; problem lengths 27, 81, 243 & 729.

◮ Number of evaluations & minimal population size.
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Experiments: conclusion

◮ LTGA (= GOMEA with LT FOS) very efficient on Deceptive
Trap function, Nearest-Neighbor NK landscape, and
Hierarchical Trap function.

◮ Tree not always suitable linkage model: for instance
spin-glasses LTGA vs. hBOA (Pelikan, Hauschild & Thierens,
2011).

◮ Other FOS models possible: Linkage Neighborhood OM
(Bosman & Thierens, 2012).

◮ Linkage Tree seems to be good compromise between FOS
model complexity and search efficiency.
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Predetermined vs. Learned FOS

◮ Problem structure unknown: learn a FOS model.

◮ Problem structure Information available: predetermined FOS
model.

◮ What is a good predetermined FOS model ?

◮ Direct mapping of dependency structure of problem definition
to a predetermined FOS model ?

◮ Predetermined linkage models mirroring the static structure of
the problem not sufficient (Thierens & Bosman, 2012).

◮ Dynamically learned tree model superior to mirror structured
models and to static tree model.

◮ Question: is there an optimal, predetermined linkage model
that outperforms the learned (tree) model ?
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Parameter-less Population Pyramid

◮ P3: no parameter values to choose (Goldman, Punch; 2014)

◮ Each level of a pyramid-like structure is a population of
solutions.

◮ Solutions are always hill-climbed.

◮ All solutions encountered are stored in the pyramid structure.

◮ At each level a Linkage Tree GA is run.

◮ Solutions climb the pyramid ladder with increasing fitness.

◮ Whenever a solution enters a level the linkage tree is relearned.
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Conclusions

◮ “Blind” Evolutionary Algorithms are limited in their capability
to detect and mix/exploit/re-use partial solutions (building
blocks).

◮ One requires luck or analyzing and designing ways of structure
exploitation directly into problem representation and search
operators.

◮ Having a configurable model can help overcome this.

◮ Algorithm then must learn to configure the model and thereby
exploit structure online during optimization (e.g. EDAs,
OMEAs).
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Black-Box Optimization (BBO)

◮ Maximize F(x), x ∈ P

◮ No prior knowledge of F

◮ Guess a new x and evaluate it

◮ Can only use previously evaluated solutions

◮ Minimize number of evaluations and/or actual time

◮ Needed when not much known about a problem
(e.g. simulations)
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Black-Box Optimization (BBO)

◮ Assumption: problems are somehow structured

◮ Use induction to find structure

◮ Exploit structure for increased efficiency

◮ Preferable to enumeration or iterated random sampling
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Model-based optimization

◮ What to induce?

◮ Use a model that defines reasonable structures

◮ Induce instance of the model

◮ Model capacity determines bias strength
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Stochastic optimization

◮ Random initial populations

◮ Randomized (but potentially structured) variation operators

◮ Why optimize stochastically?

◮ More robust against
◮ Noise
◮ Unreliable gradients (e.g. numerically unstable)
◮ Discontinuities
◮ Local optima
◮ . . .
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Stochastic model-based optimization

◮ Model: a parameterized (function) class

◮ Given observed solutions
{(

xi ,F(xi )
)}

◮ Induction: configure the model (construct an instance)
◮ Variation: generate new solution(s) from model (stochastically)
◮ Repeat
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Stochastic model-based optimization

◮ Model = probability distribution

◮ Induction = learning/estimation

◮ Variation = sampling

◮ Estimation-of-Distribution Algorithm (EDA)

Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 55/110

The Estimation-of-Distribution Algorithm (EDA)

◮ Use a set of n solutions for distribution estimation

◮ Focus on better solutions by selection

◮ Estimate from selection
◮ EDA: Mühlenbein and Paaß, 1996

EDA

1 Initialize P with n random solutions
2 Repeat until termination criterion met

2.1 Select subset S from P
2.2 Estimate distribution from S
2.3 Draw new set of solutions O from distribution
2.4 Update P with O
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Stochastic model-based optimization

◮ Model = description of linkages/dependencies

◮ Induction = learning/statistical testing

◮ Variation = mixing

◮ Optimal Mixing Evolutionary Algorithm (OMEA)
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The Estimation-of-Distribution Algorithm (EDA)

◮ Use a set of n solutions for linkage detection

◮ Focus on better solutions by selection within variation

◮ Estimate from selection
◮ OMEA: Thierens and Bosman, 2011

OMEA

1 Initialize P with n random solutions
2 Repeat until termination criterion met

2.1 Select subset S from P
2.2 Learn linkage model from S
2.3 Apply linkage-model guided optimal mixing

to every individual in P to generate O
2.4 Replace P by O
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Real-valued Model-Based Evolutionary Algorithms

◮ Essentially similar questions to case of binary/integer variables

◮ We don’t have the optimal model. . .

◮ Approximate the optimal model

◮ Match inductive search bias and problem structure

◮ How to learn and perform variation efficiently and effectively

◮ Trade-offs:
◮ Quality versus complexity of approximation
◮ Efficiency in # evaluations versus time

◮ Essential model questions:
◮ Can key problem structure be represented?
◮ Can key problem structure be represented efficiently?
◮ Can the model be learned from data?
◮ Can the model be learned (and used for variation) efficiently?
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Normal distribution

◮ Require practically useful models.

◮ For instance normal distribution:
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◮ Only O(l2) parameters (mean, covariance matrix)

◮ maximum-likelihood (ML) estimates well known

µ̂ =
1

|S|

|S|−1
∑

j=0

(S j), Σ̂ =
1

|S|

|S|−1
∑

j=0

((S j)− µ̂)((S j)− µ̂)T

◮ Can only model linear dependencies
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EDAs based on the Normal Distribution

◮ First uses were adaptations of PBIL
◮ Rudlof and Köppen, 1996
◮ Sebag and Ducoulombier, 1998

◮ Although initial results were interesting, quickly found that
some problems were solved more efficiently if dependencies
were modeled
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EDAs based on the Normal Distribution

◮ Make decisions based on better fit and increased complexity
(e.g. P̂(X0,X1) vs. P̂(X0)P̂(X1))

S P̂(X0)P̂(X1) P̂(X0,X1)
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EDAs based on the Normal Distribution

◮ EDAs with factorized Normal Distributions
(MIMIC, COMIT, Bayesian, Copula selection, Multivariate
(Markov networks))

◮ Bosman and Thierens, 2000, 2001
◮ Larrañaga, Etxeberria, Lozano and Peña, 2000
◮ Salinas-Gutièrrez, Hernàndez-Aguirre and Villa-Diharce (2011)
◮ Karshenas, Santana, Bielza and Larrañaga (2012)

◮ On selected problems, improvements were found when using
higher-order dependencies

◮ On some problems, results didn’t get much better however

◮ Initially mainly attributed to mismatch between model and
search space

◮ Clearly true to some extent
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EDAs based on the Normal–kernels distribution
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◮ Bosman and Thierens, 2000
◮ Ocenasek and Schwarz, 2002
◮ Ocenasek, Kern, Hansen, Müller and Koumoutsakos, 2004

◮ Natural tendency to fit structure of data (linear or not)

◮ But also tendency to overfit

◮ Maximum–likelihood estimate not usable

◮ Quality of estimation depends heavily on size of kernel
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EDAs based on the Normal–mixture distribution
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◮ Gallagher, Fream and Downs, 1999
◮ Bosman and Thierens, 2001
◮ Ahn, Ramakrishna and Goldberg, 2004

◮ Trade–off between normal and normal kernels.

◮ Requires a lot of effort to estimate with maximum likelihood
(EM algorithm).

◮ Clustering, followed by normal–distribution estimate can be
used alternatively.
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EDAs based on the Histogram Distribution

y0

y1

P̂H(Y0,Y1)(y0, y1)

◮ Bosman and Thierens, 2000
◮ Tsutsui, Pelikan and Goldberg, 2001

◮ Easy to implement and map to integers.

◮ Require many bins to get a good estimate.

◮ Curse of dimensionality.

◮ Greedy incr. factorization selection hardly possible.
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EDAs based on the Normal–mixture Distribution Revisited
◮ Cluster first, then estimate (factorized) normal distribution in

each cluster
◮ Bosman and Thierens, 2001
◮ Cho and Zhang, 2002
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◮ “Reverse” also possible (more focus on seperability)

◮ Factorize, then estimate mixture distr. per set of variables

◮ Still need to way to factorize however (select pdf to base on)
◮ Li, Goldberg, Sastry and Yu (2007)
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EDAs based on latent variable models

◮ Build models by projecting data onto model of lower
dimensionality

◮ Helmholtz machines, mixture of factor analyzers, etc
◮ Shin and Zhang, 2001
◮ Cho and Zhang, 2001
◮ Shin, Cho and Zhang, 2001
◮ Cho and Zhang, 2002
◮ Cho and Zhang, 2004

◮ Better results than standard normal EDA on some problems,
but still unable to come close to the optimum of
10-dimensional Rosenbrock function

401



Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 68/110

Direct use of normal distribution

◮ Bad results
◮ Rosenbrock:

F(x) =
∑l−2

i=0 100(xi+1 − x2i )
2 + (1− xi )
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◮ because. . .
◮ Rosenbrock has narrow valley leading to minimum
◮ Quickly samples no longer centered around minimum
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No attention for the gradient

◮ Distribution estimation makes no assumption on source

◮ Source is just selected points in parameter space

◮ Gradient info is ignored in maximum-likelihood estimate

◮ For normal distribution:
Variance goes to zero too fast
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Illustration on the 1-D sphere function

F(x) = x20

Progression in first 6 generations (top-left to bottom-right)
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Analysis of the premature-convergence problem

◮ Theoretical analysis reveals indeed limits
◮ Gonzalez, Lozano and Larrañaga, 2000
◮ Grahl, Minner and Rothlauf, 2005
◮ Bosman and Grahl, 2005
◮ Yuan and Gallagher, 2006

◮ There is for instance a bound on how far the mean can shift
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Analysis of the premature-convergence problem
◮ Variance decreases (exponentially fast)

lim
t→∞

{σ̂(t)} = lim
t→∞

{

σ̂(0)c(τ)t
}

= 0

◮ This limits mean shift to a fixed factor times initial spread!

lim
t→∞

{µ̂(t)} = µ̂(0) +
d(τ)

1−
√

c(τ)
σ̂(0)

◮ c(τ) and d(τ) functions of
◮ φ() (standard normal distribution) and
◮ Φ() (inverse cumulative normal distribution)
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(Bosman and Grahl, 2005)
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Illustration on the 2-D plane function
F(x) = x0 + x1

Progression in first 6 generations
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What is missing?

◮ Structure of landscape can be very complicated

◮ “Simple” normal distr. hardly matches global structure

◮ More involved distributions possible, but
◮ harder, or even impossible, to estimate with ML
◮ requires lots of data

◮ Local structure can be approximated but. . .
◮ there is no generalization outside of the data range
◮ Once optimum “lost” outside data range, EDA converges

elsewhere, possibly not even a local optimum!

◮ EDA based on maximum-likelihood estimate not efficient
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Ways to improve

◮ Gradient hybridization
◮ Explicit use of gradient information
◮ Apply gradient-based search to certain solutions

(e.g. conjugate gradients)
◮ Requires gradient computation

◮ not always possible
◮ not always reliable

◮ Adapt(ive) (ML) estimation
◮ Derivative Free
◮ Maintain EDA properties for valley case
◮ Adapt in other cases (to explore beyond selected solutions)
◮ How to distinguish?
◮ Three ingredients:

◮ Adaptive Variance Scaling (AVS)
◮ Standard-Deviation Ratio (SDR)
◮ Anticipated Mean Shift (AMS)

403



Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 76/110

Adapted Maximum-Likelihood Gaussian Model
◮ Adaptive Variance Scaling (AVS) &

Standard-Deviation Ratio (SDR)

◮ If improvements are found

a) far from the mean, b) close to the mean,

enlarge Σ̂ do nothing

◮ Close to the mean: within one standard deviation
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Adapted Maximum-Likelihood Gaussian Model
◮ Anticipated Mean Shift (AMS)

◮ Anticipate where the mean is shifting

◮ Alter part of generated solutions by shifting

◮ On a slope, predictions are better (further down slope)

◮ Require balanced selection to re-align covariance matrix
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Illustration on a 2-D slope
F(x) = x0 + x1

Progression in first 6 generations
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AMaLGaM, CMA-ES, NES, and RP

◮ AMaLGaM IDEA (or AMaLGaM for short)
Adapted Maximum–Likelihood Gaussian Model Iterated
Density-Estimation Evolutionary Algorithm

◮ Natural question:
what is the relation to CMA-ES (Hansen, 2001), NES
(Wierstra, Schaul, Peters and Schmidhuber, 2008) and the
approach using Random Projections (Kabán, Bootkrajang and
Durrant, 2013)?

◮ Answer: the probability distribution

◮ All can be seen to be EDAs: every generation they
estimate/update a probability distribution (which also happens
to be the normal distribution in all three cases) and perform
variation by generating new samples from this distribution.
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AMaLGaM, CMA-ES, NES, and RP

◮ Differences are only in how the distribution is obtained.
Where AMaLGaM uses maximum-likelihood estimates from
the current generation, CMA-ES and NES base estimates on
differences between subsequent generations as well as many
elaborate enhancements (see tutorial on CMA-ES) and RP
uses ensembles of random projections to lower dimensions to
estimate covariance matrices more efficiently.

◮ On typical unimodal benchmark problems (sphere, (rotated)
ellipsoid, cigar, etc) these algorithms exhibit polynomial
scalability in both minimally required population size and
required number of function evaluations

◮ CMA-ES, NES and RP scale better than AMaLGaM on such
problems
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Parameter-free Gaussian EDAs
◮ Parameters get in the way of ease–of–use

◮ Remove all parameters: derive and implement guidelines

◮ Restart mechanism to increase success probability

◮ Typical restart scheme: increase size exponentially

◮ Works well on Griewank (left),
not so much on Michalewicz (right)

◮ Many different schemes exist therefore (also algorithm
specific, e.g. BIPOP-CMA-ES and IPOP-CMA-ES)
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Noiseless BBOB comparison with other algorithms
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Noiseless BBOB comparison with other algorithms
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Noiseless BBOB comparison with other algorithms
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Permutation Model-Based Evolutionary Algorithms

◮ Binary/Integer representations are discrete, but also Cartesian

◮ Other discrete search spaces exist that are non-Cartesian

◮ Most notably: permutation-based problems

◮ Important real-world relevance, e.g. routing and scheduling

◮ Brings different challenges than Cartesian spaces however
◮ Relative ordering problems
◮ Absolute ordering problems
◮ Neighbor ordering problems
◮ Combinations of these

◮ Different types of models are more suited for specific types of
ordering problem
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Permutation Model-Based Evolutionary Algorithms

◮ Building permutation models directly not straightforward

◮ Potential aid in the form of random keys (Bean, 1997)

◮ Random keys encode permutations in real-valued space (via
sorting)

0 1 2 3
0.61 0.51 0.62 0.31

⇒
3 1 0 2

0.31 0.51 0.61 0.62

◮ Real-valued approaches can thus be used directly
◮ Bosman and Thierens (2001) (normal EDA)
◮ Larrañaga et al (2001) (normal EDA)

◮ Inefficient scale-up behavior on deceptive additively
decomposable relative ordering problems

◮ Highly redundant encoding that is hard to model with a
normal distribution

Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 87/110

Permutation Model-Based Evolutionary Algorithms

◮ Use crossover on the basis of a factorization of the normal
distribution instead

◮ Bosman and Thierens, 2001

◮ Now obtain polynomial scale-up behavior

◮ How about a direct modelling of probabilities of permutations?

◮ Consider a marginal product factorization (i.e. mutually
exclusive subsets of variables as in ECGA)

◮ Once an instance is sampled for a subset of variables, other
variables can’t use these values anymore

◮ One way to deal with this is explicit repair of probability
tables during sampling

◮ Bengoetxea et al (2000)
◮ Pelikan et al (2007)

◮ Requires very large sample sizes

◮ Sampling repair can introduce unwanted biases
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Permutation Model-Based Evolutionary Algorithms

◮ For relative-ordering variables, a probabilistically correct
factorization approach is possible

◮ Bosman, 2003

◮ Continuous, Binary: P(X) = P(X0,X4)P(X1)P(X3,X2).

◮ Permutation: P(X) = 2!1!2!
5! P(X0,X4)P(X1)P(X3,X2).

◮ Random variable Xi : position of integer i in the permutation
→ tackle relative–ordering permutation problems.

◮ Normalization required, because there are 5! permutations.

◮ “Oddities” specific to permutations exist (spurious
dependencies between “low” variables in one building block
and “high” variables in another)

◮ Require specialized adaptations of standard linkage learning /
factorization techniques

Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 89/110

Permutation Model-Based Evolutionary Algorithms

◮ Generate instance for each subset of variables independently

◮ Then map to the real-valued domain using random keys and
then translate the entire string into a valid permutation

◮ Preserves relative ordering of variables in subsets

◮ Can sample directly instead of using crossover
(crossover still more robust however)

◮ Scales polynomially and much better than normal-pdf induced
crossover
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Permutation Model-Based Evolutionary Algorithms

◮ Edge-histogram based sampling
◮ Tsutsui, Pelikan and Goldberg, 2003

◮ Maps well to problems with neighboring variable relations

◮ Model is a matrix with probabilities of edges

◮ Matrix needs to be adjusted while sampling

◮ For problems with neighboring relations works better than
random keys
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Permutation Model-Based Evolutionary Algorithms

◮ Gaussian “equivalent” in permutation space: Mallows model
◮ Ceberio, Mendiburu and Lozano (2011)

◮ Requires a distance measure between permutations and a
central permutation

◮ Also requires a spread parameter (not estimated from data)

◮ Most commonly used distance: Kendall-τ , allows factorization

◮ Finding central permutation is NP-hard however

◮ Fast heuristics are possible (linear in l and n)

◮ Final parameter estimation and sampling are not trivial and
require dedicated algorithms

◮ First results are promising (permutation flow shop),
outperforming Tsutsui
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Tree (GP) Model-Based Evolutionary Algorithms

◮ Not tree-models for dependencies, but tree-models for
tree-based solutions

◮ Estimation-of-Distribution Programming (EDP)

◮ Typically grammar based, but not always

◮ Grammar Guided Genetic Programming (GGGP)

◮ Grammars very useful to limit search space

◮ But how do we use it learn structural features?

Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 93/110

Tree (GP) Model-Based Evolutionary Algorithms

◮ Early works did not use grammar, e.g PIPE (Probabilistic
Incremental Program Evolution)

◮ Salustowicz and Schmidhuber, 1997

◮ Store probabilities of options (operators/terminals) for any
node in the solution tree, bound maximum size

◮ All nodes thus independent
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Tree (GP) Model-Based Evolutionary Algorithms

◮ If looking at solutions node-based, and using a fixed template,
essentially have Cartesian fixed-length representation

◮ Can use existing integer-based model-based EAs on this

◮ eCGP (ECGA for GP) does exactly this
◮ Sastry and Goldberg, 2003

◮ Better results for selected problems, but use of a template has
it limitations
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Tree (GP) Model-Based Evolutionary Algorithms

◮ Extensions to Bayesian factorizations are also possible

◮ Incremental tree complexity (and model complexity) using
special operators

◮ Looks, Goertzel and Pennachin (2004)
◮ Looks (2006)

408



Dirk Thierens & Peter A.N. Bosman. GECCO 2016 Tutorial - Model-Based Evolutionary Algorithms. 96/110

Tree (GP) Model-Based Evolutionary Algorithms

◮ Alternative approach: grammar-based

◮ Start with basic production rules

◮ Learning: assign probabilities to rules and increase complexity
and specificity of rules using heuristics

◮ Sampling: select probabilistically from appropriate production
rules

◮ Results are promising in that less function evaluations are
often needed than standard GP, but time-complexity is
(much) larger

◮ Shan, McKay, Baxter, Abbass and Essam, 2003
◮ Bosman and de Jong, 2004
◮ Shan, McKay, Baxter, Abbass, Essam and Hoai, 2004
◮ Hasegawa and Iba, 2007
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Tree (GP) Model-Based Evolutionary Algorithms

◮ Intermediate approach: n-grams

◮ Focus probabilities on most important relationships (local,
e.g. with parents and grandparents)

◮ Enumerate all possible relationships beforehand

◮ Learning: estimate probabilities for the n-grams

◮ Sampling: recursively employ the n-grams

◮ Advantage: learning is much faster than with grammar
transformations

◮ Hemberg, Veeramachaneni, McDermott, Berzan and O’Reilly
(2012)
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Multi-objective Model-Based Evolutionary Algorithms
◮ Multiple objectives should be optimized simultaneously
◮ Conflicting objectives, no expression of weights
◮ Can’t combine the objectives in a single scalar objective
◮ Want to present

a set of promising
alternatives to a
decision maker

◮ Example:
Maximize the quality
and minimize the
production costs
of a product

◮ NOTE:
This is NOT
an MO tutorial

Q
u
al
it
y

Costs

Non-dominated (front)

Dominated
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Multi-objective Model-Based Evolutionary Algorithms

◮ Algorithm attempts to obtain improvements all along the
current Pareto front

◮ Different regions along Pareto front may be very different

◮ E.g. what are far ends of the optimal Pareto front? Optimal
solutions for individual objectives fi

◮ Restrict variation to clusters (restricted mating)

◮ For instance: obtain clusters along Pareto front: cluster
selected solutions

◮ Bosman and Thierens, (2002)
◮ Pelikan, Sastry and Goldberg, (2009)
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Multi-objective Model-Based Evolutionary Algorithms

Population
Selection
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Multi-objective Model-Based Evolutionary Algorithms

◮ In EDAs, this clustering corresponds to use of
mixture probability distributions

P(ς,θ)(Z) =
k−1
∑

i=0

βiP(ς i ,θi )(Z)

◮ Cluster solutions in objective space (e.g. k-means)

◮ Estimate a simpler distribution P(ς i ,θi )(Z) in each cluster

◮ Set all mixing coefficients to βi =
1
k

◮ Parallel, specialized exploration along front
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Multi-objective Model-Based Evolutionary Algorithms

◮ Each distribution explores own region

◮ Learning may however by incremental (CMA-ES, iAMaLGaM,
iBOA, etc)

◮ Assign each distribution own adaptive incremental mechanisms

◮ Cannot combine directly with clustering each generation

◮ Need correspondence over generations

◮ Number of clusters fixed beforehand (k)
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Multi-objective Model-Based Evolutionary Algorithms

◮ Implicit cluster registration

◮ Keep clusters spatially separated during run.

◮ Assign new solution to its nearest, non-full cluster

◮ Can over time lead to inefficient cluster movement
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Multi-objective Model-Based Evolutionary Algorithms

◮ Explicit cluster registration

◮ Minimize sum of cluster distance over all permutations of
clusters in subsequent generations

◮ Bosman, 2010
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Conclusions

◮ “Blind” metaheuristics are limited in their capability to detect
and mix/exploit/re-use structural features of an optimization
problem (e.g. partial solutions, building blocks, promising
search directions, etc).

◮ One requires luck or analyzing and designing ways of structure
exploitation directly into problem representation and search
operators.

◮ Having a configurable model can help “overcome” this / help
to do this automatically.

◮ Algorithm then must learn to configure the model and thereby
exploit structure online during optimization.

◮ Having an explicitly tunable model can really help
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Conclusions

◮ We don’t have the optimal model. . .

◮ Approximate the optimal model

◮ Match inductive search bias and problem structure

◮ How to learn and perform variation efficiently and effectively

◮ Trade-offs:
◮ Quality versus complexity of approximation
◮ Efficiency in # evaluations versus time

◮ Essential model questions:
◮ Can key problem structure be represented?
◮ Can key problem structure be represented efficiently?
◮ Can the model be learned from data?
◮ Can the model be learned (and used for variation) efficiently?
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Conclusions

◮ Efficient model-based evolutionary algorithms
(EDAs/IDEAs/PMBGAs/OMEAs) exist

◮ Binary/Integer/Permutation/Real-valued/GP &
multi-objective

◮ Research is ongoing

◮ Especially useful when optimizing from a black-box
perspective (e.g. complex simulations)

◮ Also useful from a white-box perspective
◮ Can learn more about the problem through learnt models
◮ Models configurable by hand (remove “expensive” learning

overhead)
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Conclusions

◮ Books
◮ Larrañaga and Lozano (eds) (2001). Estimation of Distribution

Algorithms: A New Tool for Evolutionary Computation.
Kluwer.

◮ Lozano, Larrañaga, Inza, Bengoetxea (2006). Towards a New
Evolutionary Computation: Advances on Estimation of
Distribution Algorithms, Springer.

◮ Pelikan, Sastry, Cantú-Paz (eds) (2006). Scalable
Optimization via Probabilistic Modeling: From Algorithms to
Applications, Springer.
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