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Summary

e Random-key genetic algorithm of Bean (1994)
e Biased random-key genetic algorithms (BRKGA)
— Encoding / Decoding
— Initial population
— Evolutionary mechanisms
— Problem independent / problem dependent components
— Multi-start strategy
— Specifying a BRKGA
— Application programming interface (API) for BRKGA
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Summary

e Applications
— 2-dim and 3-dim packing
— 3-dim bin packing
—Unequal area facility layout
—Routing in IP networks
—Redundant content distribution in IP networks
—Scheduling divisible loads

e Concluding remarks
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Encoding with random keys GAs and random keys

e A random key is a real random number in the

, . e Mating is done using
continuous interval [O,1).

parametrized uniform
 Avector X of random keys, or simply random CrOSSOVEr  (Spears & Dedong . 1950)

keys, is an array of n random keys. a=(0.25,0.19,0.67, 0.05,0.89)

[} i [
For each gene, flip abiased | '3 00 076, 0.93. 0.08)

e Solutions of optimization problems can be coin to choose which ¢=(0.25.0.90, 0.76, 0.05, 0.89 )
encoded by random keys. parent passes the allele
. L . If every random-key array corresponds
e A decoder is a deterministic algorithm that takes (key, or value of gene) to i & el caluion: e dlveys
a vector of random keys as input and outputs a the child. produces feasible offspring.
feasible solution of the optimization problem.
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GAs and random keys GAs and random keys
Initial population is made up of P
* Introduced by Bean (1994) random-key vectors, each with N
for sequencing problems. keys, each having a value
e Individuals are strings of S=(0.25,0.19 0.67,0.05,089) denerated uniformly at random in
real-valued numbers s(1) s(2) s(3) s(4) s(5) the interval [O,1).
(random keys) in the
interval [O,1).
e Sorting random keys results  s'=(0.05,0.19, 0.25,0.67, 0.89 )
in a sequencing order. s(4) s(2) s(1) s@3) s(5)

Sequence:4—-2—-1-3-5
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GAs and random keys

Population K

At the K-th generation,
compute the cost of each
solution and partition the Elite solutions
solutions into two sets: elite
solutions and non-elite
solutions. Elite set should
be smaller of the two sets
and contain best solutions.
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GAs and random keys

Population K

Evolutionary dynamics

— Copy elite solutions from population
K to population K+1

Elite solutions

— Add R random solutions (mutants)
to population K+1

— While K+1-th population < P

¢ RANDOM-KEY GA: Use any two
solutions in population K to produce
child in population K+1. Mates are
chosen at random.
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Population K+1

Elite solutions

Mutant
solutions

485

Biased random key genetic algorithm

e A biased random key genetic algorithm (BRKGA)
is a random key genetic algorithm (RKGA).

e BRKGA and RKGA differ in how mates are
chosen for crossover and how parametrized
uniform crossover is applied.
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BRKGA

How RKGA & BRKGA differ

RKGA

both parents chosen at
random from entire
population

either parent can be
parent A in parametrized
uniform crossover
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BRKGA

both parents chosen at
random but one parent
chosen from population
of elite solutions

best fit parent is parent A
in parametrized uniform
crossover

BRKGA



Biased random key GA

Population K
Evolutionary dynamics

— Copy elite solutions from population
K to population K+1

Elite solutions

— Add R random solutions (mutants)
to population K+1

— While K+1-th population < P

¢ RANDOM-KEY GA: Use any two
solutions in population K to produce
child in population K+1. Mates are
chosen at random.

e BIASED RANDOM-KEY GA: Mate elite
solution with other solution of
population K to produce child in
population K+1. Mates are chosen at
random.
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BRKGA: Probability

child inherits
key of elite
parent > 0.5

Population K+1

Elite solutions

Mutant
solutions

Paper comparing BRKGA and Bean's

Method

Fosmn | Goncalves, R., and Toso,

- Jemisa - YAn experimental comparison of
biased and unbiased random-key

| Operaci

‘ genetic algorithms”,

Pesquisa Operacional, vol. 34, pp. 143-164,

2014,
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cumulative probabil ity
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08 -

cunulative probability

Pr(t

BRKGA —

RKGA

)=0.740

Probability computed with method
of Ribeiro et al. (2012)

set covering
problem: scp41

BRKGA —+—
RKIGFI ——

L
a 2800
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cumulative probabiliy

Framework for biased random-key genetic algorithms

' Generate P vectors Decode each vector
' of random keys of random keys
]

Pr(t <t )=0.847 ' Problem independent

BRKGA ~  RKGA

set k-covering -
problem: scp48-7

Classify solutions as Sort solutions by Stopping rule
elite or non-elite their costs satisfied?

Combine elite and

Copy elite solutions Generate mutants in non-elite solutions
— to next population next population and add children to
: i next population
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Observations Decoding of random key vectors can be done in parallel
e Random method: keys are randomly generated so Generate P vectors Decoris eathvestor
solutions are always vectors of random keys of random keys of random keys

e Elitist strategy: best solutions are passed without change
from one generation to the next (incumbent is kept)

e Child inherits more characteristics of elite parent: Classify solutions as Sort solutions by Stopping rule
. . elite or non-elite their costs satisfied?
one parent is always selected (with replacement) from the
small elite set and probability that child inherits key of elite
parent > 0.5 Not so in the RKGA of Bean.

, ] Combine elite and
b NO mutation In crossover: mutants are used instead Copy elite solutions Generate mutants in non-elite solutions

to next population next population and add children to

(they play same role as mutation in GAs ... help escape local ————

optima)
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Is a BRKGA any different from applying BRKGA in multi-start strategy
the decoder to random keys?

output
incumbent

e Simulate a random multi-start decoding method
with a BRKGA by setting size of elite partition to e

rule

1 and number of mutants to P—1 satisfied 7

.........................................................................

e Fach iteration, best solution is maintained in elite

' Generate P vectors Decode each vector
set and P—1random key vectors are generated as | o ke o ke | P
mutants ... no mating is done since population |l eee e
: Classify solutions as Sort solutions by Restart rule : Incumbent

already has P individuals

elite or non-elite their costs faTo), satisfied?

Copy elite solutions Generate mutants in
to next population next population
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Network monitor location problem (opt = 23)

solution i
nle8-i?=-n188-b188: GA and randon multi-start iterates
a9 T T T 09 i
H H GA +
rand nulti-start
: 0.8 - -
07 + 4
z
g °fr Randomized heuristic iteration
S o5 | count distribution: constructed 1
= . .
- k& by independently running the
@ g 04 + . .
] s algorithm a number of times, each
03 time stopping when the algorithm 1
finds a solution at least as good as a
0.2 + 1
given target.
01 + -
0 . .
10 100 1000 10000 100000
iterations to target solution

i
8.1 1 ia 188 1088

Time (ibm t41 secs)
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In most of the independent runs, the algorithm finds the target solution in However, some runs take much longer: 5% of the runs take over 2000
relatively few iterations: 25% of the runs take fewer than 101 iterations iterations
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teraticns to target solution fterations to target solution
In most of the independent runs, the algorithm finds the target solution in However, some runs take much longer: 2% of the runs take over 9715
relatively few iterations: 75% of the runs take fewer than 345 iterations iterations
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BRKGA
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100000

BRKGA

Probability that algorithm will take
over 345 iterations: 25% = 1/4

By restarting algorithm after 345
iterations, probability that new run
will take over 690 iterations: 25% =
1/4

Probability that algorithm with
restart will take over 690 iterations:
probability of taking over 345 X
probability of taking over 690
iterations given it took over 345 =
VaxVa=1/4

490

03

08

07 F

cumulaive probatediny

03 r

02

01 ¢

06

05

04

T | Probability that algorithm will still be
of running after K periods of 345
j | iterations: 1/4

If” For example, probability that
/ | algorithm with restart will still be
/ | running after 1725 iterations (5
/) | periods of 345 iterations): 1/4° =
W 20 0.0977%

10

100 1000 10000 100000
Iterations 1o target solmon

This is much less than the 5%
probability that the algorithm
without restart will take over 2000
iterations.
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Restart strategies

First proposed by Luby et al. (1993)

They define a restart strategy as a finite sequence
of time intervals S = {T], T, T } which define

epochs T T]+T2, T1+T2+T3, ... when the
algorithm is restarted from scratch.

Luby et al. (1993) prove that the optimal restart
strategy uses T =T =T=""= T*, where ™ isa

constant.
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Restart strategy for BRKGA

e Recall the restart strategy of Luby et al. where equal time
intervals T=T=T,=7= T* pass between restarts.

e Strategy requires T* as input.
¢ Since we have no prior information as to the runtime
distribution of the heuristic, we run the risk of:

— choosing T too small: restart variant may take long to
converge

— choosing T too big: restart variant may become like no-
restart variant
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Restart strategy for BRKGA

e We conjecture that number of iterations between
improvement of the incumbent (best so far) solution
varies less w.r.t. heuristic/ instance/ target than run
times.

e We propose the following restart strategy: Keep track of
the last generation when the incumbent improved and
restart BRKGA if K generations have gone by without
improvement.

e We call this strategy restart(K)
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Example of restart strategy for BRKGA: Telecom application

1

o9 | restart strategy:
restart(2000);

T =
Iy

e
o
#

<" no restart

08

o7 r

06

05

04

cumulative probability

03

02

01

with restart ——
without restart ——«—

1000

100,000 1,000,000 10,000,000
iterations to BKS
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10,000

Specifying a biased random-key GA

e Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

e Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

e Parameters
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Specifying a biased random-key GA brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R.,
“A C++ Application Programming Interface

— Size of elite partition: 15-25% of population for Biased Random-Key Genetic A|gorithms,"
— Size of mutant set: 5-15% of population Optimization Methods & Software, vol. 30, pp. 81-93, 2015.

Parameters:

— Size of population: a function of N, say N or 2N

— Child inheritance probability: > 0.5, say 0.7

— Restart strategy parameter: a function of N, say 2N or TON Software: http://mauricio.resende.info/src/brkgaAPI
— Stopping criterion: e.g. time, # generations, solution quality,
# generations without improvement
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brkgaAPIl: A C++ API for BRKGA

o FEfficient and easy-to-use object oriented application A n exa m P I e B R KGA:

programming interface (API) for the algorithmic framework
of BRKGA.

e (Cross-platform library handles large portion of problem Pa C kl n g We I g h ted

independent modules that make up the framework, e.g.

rectangles

— evolutionary dynamics

e Implemented in C++ and may benefit from shared-memory
parallelism if available.

e User only needs to implement problem-dependent decoder.
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Constrained orthogonal packing

Reference
e r[i] rectangles of type i =1, ..., N are to be packed in the

large rectangle without overlap and such that their edges

JF. Gongalves and R, “A parallel multi- are parallel to the edges of the large rectangle;

population genetic algorithm for a . Fori=1 N, we require that:
constrained two-dimensional orthogonal S 0 <Plil< r[i] < Q[i]

packing problem," Journal of Combinatorial
Optimization, vol. 22, pp. 180-201, 2011.

Tech report:
http://mauricio.resende.info/doc/pack2d.pdf H Suppose 5= r[1] < 12
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Constrained orthogonal packing Constrained orthogonal packing
e Given a Iarge P|anar stock rectangle (W, H) of width  r[i] rectangles of type i=1, ..., N are to be packed in the
W and height H: large rectangle without overlap and such that their edges

) ) _ are parallel to the edges of the large rectangle;
e Given N smaller rectangle types (wl[il, h[i]),

i=1,..,N, each of width wl[i], height h[i], and value
vlil;

e Fori=1, ..., N, we require that:
0 <Plil=< rli] < Qfil

W

Suppose 5511112

H
2 4
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Obijective

Among the many feasible packings, we want to find one that
maximizes total value of packed rectangles:
vl r[1]1+v[2] r[2] + - - - 4+V[N] r[N]
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Applications

Problem arises in several production processes, e.d.
— Textile
— Glass
— Wood
— Paper
where rectangular figures are cut from large
rectangular sheets of materials.
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50 2D-HopperTP12-1-49-3591.txt: 3591

Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591

New best known solution!
Previous best: 3580 by a
Tabu Search heuristic
(Alvarez-Valdes et al., 2007)

10 20 30 40
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BRKGA for
constrained 2-dim
orthogonal packing
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Encoding

e Solutions are encoded as vectors X of
2N'=2{Q[1]+Q[2] +--- +QIN] }
random keys, where Q[i] is the maximum number
of rectangles of type i (fori=1, ..., N) that can be
packed.

o X=(X[1], ..., X[N], XIN'+11], ..., X[2N'] )

Rectangle type Vector of placement
packing sequence procedures (VPP)
(RTPS)
GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA
Decoding

e Simple heuristic to pack rectangles:
— Make Q[i] copies of rectangle i, fori=1, ..., N.

— Orderthe N'=Q[1]+Q[2] + --- + Q[N] rectangles in
some way. Sort first N' keys of X to obtain order.

— Process the rectangles in the above order. Place the
rectangle in the stock rectangle according to one of
the following heuristics: bottom-left (BL) or left-
bottom (LB). If rectangle cannot be positioned,
discard it and go on to the next rectangle in the
order. Use the last N' keys of X to determine which

heuristic to use. If k[N'+i] > 0.5 use LB, else use BL.
GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Decoding

e A maximal empty rectangular space (ERS) is an empty
rectangular space not contained in any other ERS.

e ERSs are generated and updated using the Difference
Process of Lai and Chan (1997).

* When placing a rectangle, we limit ourselves only to
maximal ERSs. We order all the maximal ERSs and place
the rectangle in the first maximal ERS in which it fits.

e |et (x[i], y[i]) be the coordinates of the bottom left

corner of the i-th ERS. "
ERS

x[i], yli
GECC0'2016 — Denver, Colorado + July 2(0-5, X(gl]é) BRKGA

Decoding

e [f BL is used, ERSs are ordered such that
ERSI[i] < ERS[j] if y[i] <ylj] or y[i] = y[j] and

x[i] < x[jl.
- -
ERSJi] < ERSJj]
495 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA
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Decoding
2 4
e [f LB is used, ERSs are ordered such that

ERS[i] < ERSJ[j] if x[i] < x[j] or x[i] = x[j] and
ylil <yljl.

BL can run into problems even
on small instances (Liu & Teng, 1999).

Consider this instance with 4
rectangles. ERSJi]

BL cannot find the optimal
solution for any RTPS. ERS[i] < ERSJj]

BRKGA GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Similar infeasibilities
are observed if 2, 3,
or 4 is the first
rectangle in the
RTPS.

RTPS: 1-2-3-4

RTPS: ] —4—2—3 t

RTPS: 1-4-3-2

RTPS: 1-3-2-4
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RTPS: 1-3-4-2
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BRKGA

BRKGA

4

BL

4 does not fit
in ERS[1].

4

BL

4 does fit
in ERS[2].

Optimal solution!

2
BL
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Design

e \We compare solution values obtained by the
parallel multi-population BRKGA with solutions
obtained by the heuristics that produced the best
computational results to date:

— PH: population-based heuristic of Beasley (2004)

— GA: genetic algorithm of Hadjiconsantinou & lori
(2007)

— GRASP: greedy randomized adaptive search
procedure of Alvarez-\aldes et al. (2005)

— TABU: tabu search of Alvarez-Valdes et al. (2007)
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2D-ngcutcon18-20678.txt: 20678 New BKS

Number of best solutions / total instances

fora 100 x100
doubly
Problem -- GRASP |TABU S'ffsofw constrained
instance of
Fekete &
Schepers (1997)
Large  0/21 0/21 5/21 8/21 20/21 of value 20678,
random’ Previous best
was 19657 by
tabu search of
Doubly  11/21 12/21  17/21 19121 Alvarez Valdes et
constrained al., (2007).
30 types
* For large random: number of best average solutions / total instance classes 30 rectangles
1
20 40 60 100
GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Minimum, average, and maximum solution 2D-ngcutcon21-22140-1.txt: 22140 New BKS for a 100
times (secs) for BRKGA (BL-LB-L-4NR)

Problem Min solution Avg solution Max solution
time (secs) |time (secs) |time (secs)

a0 x 100 doubly

constrained
instance Fekete &

Schepers (1997) of
Previous BKS was
Large random 1.78 23.85 72.70 22011 by tabu
search of Alvarez-
Doubly 16.87
constrained

29 types
97 rectangles

20 40 60
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Some remarks

We have extended this to 3D packing:
computer: J.F. Goncalves and M.G.C.R., “A parallel multi-population biased
il random-key genetic algorithm for a container loading
k. problem,” Computers & Operations Research, vol. 29, pp. 179-190,
2012.

Tech report: http://mauricio.resende.info/doc/brkga-pack3d.pdf

J.F. Goncalves and R., "A biased random-key
i genetic algorithm for 2D and 3D bin

packing problems," International J. of
Production Economics, vol. 15, pp. 500-510, 2013.

http://mauricio.resende.info/doc/brkga-binpacking.pdf
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3D bin packing problem

Minimize number of containers
Container (bin) of (bins) needed to pack all boxes

fixed dimension h
3D bin packing

Boxes of different dimensions
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3D bin packing constraints

e Each box is placed completely within container
* Boxes do not overlap with each other
e Each box is placed parallel to the side walls of bin

* |n some instances, only certain box orientations
are allowed (there are at most six possible
orientations)
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Six possible orientations for each box

B
P §

5

©

- -
©
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Difference process - DP
(Lai & Chan, 1997)

When box is placed in container ...
use DP to keep track of maximal free spaces

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Encoding

Solutions are encoded as vectors of 3n random keys,
where n is the number of boxed to be packed.

LX)

X=(x,x,...,x,x , X , X
1 2 n 2n+] 2nt2 3n

1’ T2t '

X
2n

Box packing sequence Placement heuristic Box orientation
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Decoding Experiment

1) Sort first n keys of X to produce sequence boxes will be packed;

e \We compare BRKGA with:

2) Use second n keys of X to determine which placement heuristic to

use (back-bottom-left or back-left-bottom): — TS3, the tabu search of Lodi et al. (2002)
if x__<Y2 then use back-bottom-left to pack i-th box — GLS, the guided local search of Faroe et al. (2003)
if x> V2 then use back-left-bottom to pack i-th box — TS2PACK, the tabu search of Crainic et al. (2009)
3) Use third n keys of X to determine which of six orientations to — GRASP, the greedy randomized adaptive search
use when packing box: procedure of Parreno et al. (2010)

X € [0,1/6): orientation 1;

x, . € [1/6,2/6): orientation 2; ...

X € [5/6,1]: orientation 6.
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Decoding Summary

For each box

BRKGA| _GRASP TSZPACK | GLS
— scan containers in order they were opened

100° 127.3 127.3 127.9 128.2 128.3
— use placement heuristic to place box in first container in 2 100° 125.5 125.8 126.8
which box fits with its specified orientation 3 100° 126.5 126.9 127.5
— if box does not fit in any open container, open new 4 100° 294.0 294.0 294.0 293.9 294.2
. . . . . . 3
container and place box using placement heuristic with its 2 L) (Ut (-3 s e s
e . . 6 10° 95.0 95.4 96.1 95.8 96.0
specified orientation
7 40° 58.2 59.4 60.0 59.0 59.0
8 100° 80.9 82.0 82.6 81.9 81.9

- Sumiowsiey| oms om3 e |
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15

TL30 (31454.23)

1 TL30

New best known
1 Solution: 31454.2

Previous best known

1 Solution; 33721.5
TSaST (Scholtz et al., 2009)
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OSPF routing in IP
networks

GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

The Internet

e The Internet is composed of
many (inter-connected)
autonomous systems (AS).

e An AS is a network controlled
by a single entity, e.g. ISP,
university, corporation,
country, ...
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Routing

e A packet is sent from a origination router S to a
destination router T.

e Sand T may be in
—same AS: [GP routing
— different ASes: BGP routing
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IGP Routing

e [GP (interior gateway
protocol) routing is
concerned with
routing within an AS.

e Routing decisions are

AS made by AS operator.
GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA
BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

Peering points

Ingress point

Egress point

Peering points
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[GP Routing
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OSPF routing

e Given a network G = (N,A), where N is the set of
routers and A is the set of links.

e The OSPF (open shortest path first) routing
protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.

S

Traffic splitting >

505 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Packet routing OSPF routing

Packet's final

. Routing table is filled
When packet arrives at router,

destination. ROUting table with first hop routers
router must decide where to for each possible destination.
. ute ad route
send it next. router router
router router First hop routers.
router Routing consists in finding a
link-path from source to ©
Routing table destination.
GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA
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OSPF routing OSPF weight setting

o Assign an integer weight € [1, w__] to each link e (OSPF weights are assigned by network operator.
’ max
. — CISCO assigns, by default, a weight proportional to the
= =716 _

in AS. In general' W ax 65535=2 . inverse of the link bandwidth (Inv Cap).
e Each router computes tree of shortest weight — If all weights are unit, the weight of a path is the number of

paths to all other routers in the AS, with itself as hops in the path.

the root, using Dijkstra’s algorithm e We propose two BRKGA to find good OSPF weights.
GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 506 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Minimization of congestion

e Consider the directed capacitated network G = (N, A,c),
where N are routers, A are links, and c, is the capacity

of link a € A.

e \We use the measure of Fortz & Thorup (2000) to
compute congestion:

Q=@ () +D,L)+...+ D, (/)
where [ is the load on link a € A,
® (/) is piecewise linear and convex,
® (0)=0, forallae A
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Piecewise linear and convex ® (/)

link congestion measure

70 T T : T
slope=5000 — |
60

o
o

slope = 500 /

N
o
I

w
o
T

N
o

cost per unit of capacity

slope=3  slope=10 /

1 slope=1 \ \ / |
.~
. Y < slope=70
0 02 04 06 0.8 1 1.2 (/a /Ca)

trunk utilization rate
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OSPF weight setting problem

* Given a directed network G= (N, A) with link
capacities ¢, € A and demand matrix D = (d,)

specifying a demand to be sent from node s to

node t:

— Assign weights w, €[1, w__ ] to each link a €A,
such that the objective function ® is minimized

when demand is routed according to the OSPF
protocol.
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BRKGA for OSPF routing in IP networks

M. Ericsson, M.G.C.R., & P.M. Pardalos, “A genetic
algorithm for the weight setting problem in OSPF
routing,” J. of Combinatorial Optimization, vol. 6, pp.
299-333, 2002.

Tech report version:

http://www?2.research.att.com/~mgcr/doc/gaospf.pdf
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Tier-1 ISP backbone network (90 routers, 274 links)

BRKGA for OSPF routing in IP networks

_ 2 Weight setting with GA !
Ericsson, R., & Pardalos (J. Comb. Opt., 2002) Ll permits a 50% increase in - |
. E dina: traffic volume w.r.t. weight
nhcoding: L6 e | setting with the Inverse il
— Avector X of N random keys, where N is the number of links. The 14 L Capacity rule. i
i-th random key Corresponds to the i-th "nk Weight' é 1 2 A . R i o PR e . o
e Decoding; = X ' '
£
— Fori=1,... N: setw(i) = ceil (X() xw ) § el |
— Compute shortest paths and route traffic according to OSPF. : 06 L |
— Compute load on each link, compute link congestion, add up all al |
link congestions to compute network congestion. _ :
02 F - < T S : o ;.Ig;égg ii:i:._
0 | | i i LP LB —%—
0 10000 20000 30000 40000 50000
demand
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‘ : ‘ ‘ : ‘ : ‘ : Improved BRKGA for OSPF routing in IP networks

Tier-1 ISP backbone network (90 routers, 274 links)
o L.S. Buriol, M.G.C.R., C.C. Ribeiro, and M. Thorup, “A
hybrid genetic algorithm for the weight setting problem
in OSPF/IS-IS routing,” Networks, vol. 46, pp. 36—56,
4 2005.

cost

~“GAsolutions -

100

Tech report version:

LP lower
bound

i : : : : : : : : : http://www?2.research.att.com/~mgcr/doc/hgaospf.pdf

o =n 4nn 150 200 250 300 350 400 450 500

generation
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Improved BRKGA for OSPF routing in IP networks
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

e Encoding:

— A vector X of N random keys, where N is the number of links.
The i-th random key corresponds to the i-th link weight.

e Decoder:
—Fori=1, .. N: setw()=ceil ( X(i) x wmax)

— Compute shortest paths and route traffic according to OSPF.

— Compute load on each link, compute link congestion, add up
all link congestions to compute network congestion.

— Apply fast local search to improve weights.
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Decoder has a local search phase

Population K

Population K+1

Elite solutions

Elite solutions

Mutant
solutions

Biased coin flip crossover
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Fast local search

o Let A* be the set of five arcs ac A having
largest @, values.
e Scan arcs ae A* from largest to smallest @
= [ncrease arc weight, one unit at a time, in the range
—w,)/4] ]

= [f total cost @ is reduced, restart local search.

[w,, w, + [(w

max
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Effect of decoder with fast local search

1000

Improved: Buriol, R.,
Ribeiro, and Thorup

Improved BRKGA:

Finds solutions faster
Original: Ericsson,

R., and Pardalos
(2002)

Finds better solutions
100

cost

LP lower bound

o] 50 100 150 200 250 300

time (seconds)
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Summary System model and problem formulation

@ Divisible load scheduling » Interconnection topology: star network
@ Divisible load model > Dedicated grid
@ System model and problem formulation » Model: one master - n workers

@ Related work > Master owns the total load W
© BRKGA: Biased random keys genetic algorithm » No communication/computation overlap in any processor
» No communication overlap through the master

© Computational experiments
@ Test environment o o °
@ Instances
@ Numerical results

@ Concluding remarks and extension to multi-round scheduling
@ Concluding remarks ° °

@ Extension to multi-round scheduling

Divisible load model System model and problem formulation

» Load may be split continuously into arbitrarily many small chunks
» Single-round scheduling

> Each processor receives portion «; of total load
> Master takes ¢g; + G;a; time units to send the data to processor P;

|:ﬁil';liﬁil%liﬁﬁﬁimim IO:'H%F'E Hh’H "‘: : ifoid "Eliﬁiﬁ%ﬁliﬁﬁ > Processor P; takes w;ca; time units to process data

. = | Fixed latency g,

» No precedence constraints

............

HeehkHabe R EER T —_——
R e 1 : .

A 1 Variable communication f/"' (e —
" time G;q; i -
; E l Variable computation

time w;a;

Makespan
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Single-round scheduling

» Non-optimal scheduling:

Giaphical schochie | Gid | Sehodhie | Tiaca Fie |

2 iy
| » T,
| mo L
| L]

L

Divisible load scheduling

Multi-round scheduling

Communication/computation

concurrency

Gt whede |Gl | Schedbe | Tace Fie | / ;

. k] u

n | Kz ez ()

] L= ! 1‘-1!

M = Il I

: prerererm ———

" | & x|

. — -

New round ‘ ‘ New round ‘

» This work: single-round problem

Divisible load scheduling

Single-round scheduling

» Optimal scheduling:

Giaphical schochie | Gid | Sehodhie | Tiaca Fie |

Divisible load scheduling

Single-round scheduling

» Problem consists of determining ...

> the processors to be used,
> their activation order,
> and their loads,

> ...s0 as to minimize the makespan

511

Divisible load scheduling




BRKGA: Decoder for DLS-SR BRKGA: Decoder for DLS-SR

» BRKGA for DLS-SR evolves a population of chromosomes that

consists of vectors of real numbers (keys). » Given some activation order, the algorithm starts by sending all

. . the load exclusively to the first )
» Each solution represented by keys in the range [0, 1), one key for ¢ Joac CXCISIVELY 10 TRE ISt Drocessor

each processor » Number ¢ of processors is iteratively increased from 1 to n, until

th k deteriorates (li 10-12).
» Each solution is decoded by a heuristic that receives the vector of e makespan deteriorates (lines )

keys and builds a feasible solution for DLS-SR. » Optimal number of processors is set as £* = ¢ — 1 (lines 18-23).

» Solution quality depends on the order in which the processors are > Compute the load - sent to the last processor (line 24).

routed. » Loads «;, for ¢ = 1,...,¢* — 1, are recursively computed from ¢*

» The decoding consists of two steps: first, the processors are sorted. (lines 25-27).

in a non-decreasing order of their random keys; next, the resulting » Decoder implements these computations in time O(n).
order is used as the input for the decoder heuristic.

BRKGA: Biased random keys genetic algorithm BRKGA: Biased random keys genetic algorithm

» Decoder: AlgRap algorithm of Abib and Ribeiro (2009). » BRKGA-DLS implemented in C+-+ and compiled with GNU C4+
» Given a permutation of the processors in P, the decoder computes version 4.6.3.
in O(|P|) time the set of active processors and the amount of load » Experiments performed on a Quad-Core AMD Opteron(tm)
that has to be sent to each of them to minimize the makespan. Processor 2350, with 16 GB of RAM memory.
» In addition to the number of processors and all their data, this » Comparisons with CPLEX, HeuRet, and multistart procedure
algorithm takes as input a vector 7 describing the activation order, MS-DILS.
such that 7(7) = j indicates that processor j is the i-th to be

» Version 12.6 of CPLEX was used and the maximum CPU time

activated, for i, =1,...,n. was set to 24 hours.

» For instance, if n = 3 and m =< 2, 3,1 >, then processor 2 is the
first to be activated, processor 3 is the second, and processor 1 is
the third.

» Ten runs of each heuristic for each instance, with different seeds
for the random number generator.
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Instances Average percent relative reduction over the 720

instances of the best, average and worse solution values

found by BRKGA-DLS with respect to those obtained
by MS-DLS

» Instances used in the three first experiments: same proposed in
7.00%

Abib and Ribeiro (2009). o0y 5:98%
» 120 grid configurations with n = 10, 20,40, 80, 160 worker 500% e -
processors and eight combinations of the parameters ¢;, G; and w;, 3.00%
i=1,...,n, each of them ranging either in the interval [1, 100] 2.00%
(low) or in the interval [1000, 100000] (high). oo

Worst Average Best

» Average solution values found by BRKGA-DLS were 4.95% better
than those provided by MS-DLS.

» BRKGA-DLS identifies the relationships between keys and good
solutions, making the evolutionary process converge to better
solutions faster than MS-DLS.

Computational experiments 22 Computational experiments

Numerical results Summary of the numerical results obtained with
BRKGA-DLS, HeuRet, and MS-DLS for 720 test
instances

» The first experiment: evaluates if BRKGA-DLS efficiently
identifies the relationships b.etween keys and good solutions and » In the second experiment, we compare BRKGA-DLS with HeuRet,
converges faster to near-optimal solutions. and MS-DLS. HeuRet is a deterministic algorithm, while the

» We compare its performance with that of the multi-start others are randomized.
procedure. MS-DLS  HeuRet BRKGA-DLS

» Each iteration of MS-DLS procedure applies the same decoding Optimal values (over 497 instances) 177 320 413

s s . Best values (over 720 instances) 189 313 645

heuristic of BRKGA-DLS, but using randomly generated values Best values (over 7200 runs) 2166 - 6191
for the keys. Score value 803 112 1

» BRKGA-DLS was run for 1000 generations and MS-DLS for
1000 x | V| iterations, where | V| = 5 x | P| is the population size of > “score” represents the sum over all instances of the number of
BRKGA-DLS (same number of solutions are evaluated and methods that found strictly better solutions than the specific
compared). heuristic being considered: best heuristics have lower score values.

» BRKGA-DLS outperformed the previously existing HeuRet
heuristic and MS-DLS with respect to all measures considered.
513
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New instances Extension: Multi-round scheduling

» Extension of this approach to the harder case of multi-round (or
multi-installment) scheduling.

» 20 new, larger, and more realistic instances with |P| = 320 and
W = 10, 000.

> The values of G; and g¢; have been randomly generated in the
ranges [1,100] and [100,100.000], respectively.

» Differently from Abib and Ribeiro (2009), the values of w; have
been randomly generated in the interval [200, 500].

» Load is distributed to the active processors in several consecutive
bursts, reducing the waste in each processor and making better use
of the resources to reduce the overall makespan.

» Concurrency between communication in burst £ + 1 and
computation in burst k.

» Multi-round scheduling consists of determining ...

> These values are more realistic, since the processing rate of a real > not only the processors to be used, their activation order, and their

computer is always larger than its communication rate. loads,
» BRKGA-DLS stops after | P| generations without improvement in > but also the number of rounds. ..
the best solution found. > ...s0 as to minimize the makespan.

» On average, BRKGA improved the makespan obtained by closed
forms of Shokripour et al. (2012) by 12%.

Computational experiments g Concluding remarks and extension to multi-round scheduling

» Makespan obtained by BRKGA-DLS is always smaller than that
given by HeuRet.
» Coefficient of variation of BRKGA-DLS is very small, indicating
its robustness. )

» Percent relative reduction of BRKGA-DLS with respect to HeuRet
amounted to 3.19% for instance dls.320.10 and to 2.38% on

average. These slides and all of the papers cited in this

» Although the running times of BRKGA-DLS are larger than those lecture can be downloaded from my homepage.
of HeuRet, their average values never exceeded the time taken by '

HeuRet by more than 30 seconds.

» Larger running times are not a major issue in practice (parallel http://mauricio.resende.info
processing).
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