
e Research.

:

 -

 -

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author(s). Copyright is held by the owner/author(s).
GECCO’16, July 20–24, 2016, Denver, Colorado, USA.
ACM 978-1-4503-4206-3/16/07.
DOI: http://dx.doi.org/10.1145/2908961.2926996

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

Summary

1 Divisible load scheduling
Divisible load model
System model and problem formulation
Related work

2 BRKGA: Biased random keys genetic algorithm

3 Computational experiments
Test environment
Instances
Numerical results

4 Concluding remarks and extension to multi-round scheduling
Concluding remarks
Extension to multi-round scheduling

2

Divisible load model

� Load may be split continuously into arbitrarily many small chunks

� No precedence constraints

Divisible load scheduling 3

System model and problem formulation

� Interconnection topology: star network

� Dedicated grid

� Model: one master - n workers

� Master owns the total load W

� No communication/computation overlap in any processor

� No communication overlap through the master

Divisible load scheduling 4

System model and problem formulation

� Single-round scheduling

� Each processor receives portion αi of total load
� Master takes gi +Giαi time units to send the data to processor Pi

� Processor Pi takes wiαi time units to process data

Divisible load scheduling 5510

Single-round scheduling

� Non-optimal scheduling:

Divisible load scheduling 6

Single-round scheduling

� Optimal scheduling:

Divisible load scheduling 7

Multi-round scheduling

� This work: single-round problem

Divisible load scheduling 8

Single-round scheduling

� Problem consists of determining . . .

� the processors to be used,
� their activation order,
� and their loads,

� . . . so as to minimize the makespan

Divisible load scheduling 9511

BRKGA: Decoder for DLS-SR

� BRKGA for DLS-SR evolves a population of chromosomes that
consists of vectors of real numbers (keys).

� Each solution represented by keys in the range [0, 1), one key for
each processor.

� Each solution is decoded by a heuristic that receives the vector of
keys and builds a feasible solution for DLS-SR.

� Solution quality depends on the order in which the processors are
routed.

� The decoding consists of two steps: first, the processors are sorted.
in a non-decreasing order of their random keys; next, the resulting
order is used as the input for the decoder heuristic.

BRKGA: Biased random keys genetic algorithm 14

BRKGA: Decoder for DLS-SR

� Decoder: AlgRap algorithm of Abib and Ribeiro (2009).

� Given a permutation of the processors in P , the decoder computes
in O(|P |) time the set of active processors and the amount of load
that has to be sent to each of them to minimize the makespan.

� In addition to the number of processors and all their data, this
algorithm takes as input a vector π describing the activation order,
such that π(i) = j indicates that processor j is the i -th to be
activated, for i , j = 1, . . . ,n.

� For instance, if n = 3 and π =< 2, 3, 1 >, then processor 2 is the
first to be activated, processor 3 is the second, and processor 1 is
the third.

BRKGA: Biased random keys genetic algorithm 15

BRKGA: Decoder for DLS-SR

� Given some activation order, the algorithm starts by sending all
the load exclusively to the first processor.

� Number � of processors is iteratively increased from 1 to n, until
the makespan deteriorates (lines 10–12).

� Optimal number of processors is set as �∗ = �− 1 (lines 18–23).

� Compute the load α�∗ sent to the last processor (line 24).

� Loads αi , for i = 1, . . . , �∗ − 1, are recursively computed from �∗

(lines 25–27).

� Decoder implements these computations in time O(n).

BRKGA: Biased random keys genetic algorithm 16

Test environment

� BRKGA-DLS implemented in C++ and compiled with GNU C++
version 4.6.3.

� Experiments performed on a Quad-Core AMD Opteron(tm)
Processor 2350, with 16 GB of RAM memory.

� Comparisons with CPLEX, HeuRet, and multistart procedure
MS-DLS.

� Version 12.6 of CPLEX was used and the maximum CPU time
was set to 24 hours.

� Ten runs of each heuristic for each instance, with different seeds
for the random number generator.

Computational experiments 21512

Instances

� Instances used in the three first experiments: same proposed in
Abib and Ribeiro (2009).

� 120 grid configurations with n = 10, 20, 40, 80, 160 worker
processors and eight combinations of the parameters gi , Gi and wi ,
i = 1, . . . ,n, each of them ranging either in the interval [1, 100]
(low) or in the interval [1000, 100000] (high).

Computational experiments 22

Numerical results

� The first experiment: evaluates if BRKGA-DLS efficiently
identifies the relationships between keys and good solutions and
converges faster to near-optimal solutions.

� We compare its performance with that of the multi-start
procedure.

� Each iteration of MS-DLS procedure applies the same decoding
heuristic of BRKGA-DLS, but using randomly generated values
for the keys.

� BRKGA-DLS was run for 1000 generations and MS-DLS for
1000× |V | iterations, where |V | = 5× |P | is the population size of
BRKGA-DLS (same number of solutions are evaluated and
compared).

Computational experiments 23

Average percent relative reduction over the 720

instances of the best, average and worse solution values

found by BRKGA-DLS with respect to those obtained

by MS-DLS

� Average solution values found by BRKGA-DLS were 4.95% better
than those provided by MS-DLS.

� BRKGA-DLS identifies the relationships between keys and good
solutions, making the evolutionary process converge to better
solutions faster than MS-DLS.

Computational experiments 24

Summary of the numerical results obtained with

BRKGA-DLS, HeuRet, and MS-DLS for 720 test

instances

� In the second experiment, we compare BRKGA-DLS with HeuRet,
and MS-DLS. HeuRet is a deterministic algorithm, while the
others are randomized.

MS-DLS HeuRet BRKGA-DLS
Optimal values (over 497 instances) 177 320 413
Best values (over 720 instances) 189 313 645
Best values (over 7200 runs) 2166 - 6191
Score value 803 112 1

� “score” represents the sum over all instances of the number of
methods that found strictly better solutions than the specific
heuristic being considered: best heuristics have lower score values.

� BRKGA-DLS outperformed the previously existing HeuRet
heuristic and MS-DLS with respect to all measures considered.

Computational experiments 25513

New instances

� 20 new, larger, and more realistic instances with |P | = 320 and
W = 10, 000.

� The values of Gi and gi have been randomly generated in the
ranges [1, 100] and [100, 100.000], respectively.

� Differently from Abib and Ribeiro (2009), the values of wi have
been randomly generated in the interval [200, 500].

� These values are more realistic, since the processing rate of a real
computer is always larger than its communication rate.

� BRKGA-DLS stops after |P | generations without improvement in
the best solution found.

Computational experiments 27

BRKGA vs. HeuRet on 320-processor instances

� Makespan obtained by BRKGA-DLS is always smaller than that
given by HeuRet.

� Coefficient of variation of BRKGA-DLS is very small, indicating
its robustness.

� Percent relative reduction of BRKGA-DLS with respect to HeuRet
amounted to 3.19% for instance dls.320.10 and to 2.38% on
average.

� Although the running times of BRKGA-DLS are larger than those
of HeuRet, their average values never exceeded the time taken by
HeuRet by more than 30 seconds.

� Larger running times are not a major issue in practice (parallel
processing).

Computational experiments 29

Extension: Multi-round scheduling

� Extension of this approach to the harder case of multi-round (or
multi-installment) scheduling.

� Load is distributed to the active processors in several consecutive
bursts, reducing the waste in each processor and making better use
of the resources to reduce the overall makespan.

� Concurrency between communication in burst k + 1 and
computation in burst k .

� Multi-round scheduling consists of determining . . .

� not only the processors to be used, their activation order, and their
loads,

� but also the number of rounds. . .

� . . . so as to minimize the makespan.

� On average, BRKGA improved the makespan obtained by closed
forms of Shokripour et al. (2012) by 12%.

Concluding remarks and extension to multi-round scheduling 31

514

