Biased random-key genetic
algorith MS. An advanced tutorial

Work done when the first speaker was

MaUI’|C|O G. C. Resende - Amazon.com, Seattle employed at AT&T Labs Research.

Celso C. Ribeiro - U. Federal Fluminense, Rio de Janeiro

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
Owner/Author(s). Copyright is held by the owner/author(s).

GECCO’16, July 20-24, 2016, Denver, Colorado, USA.

ACM 978-1-4503-4206-3/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2926996

Summary

e Random-key genetic algorithm of Bean (1994)
e Biased random-key genetic algorithms (BRKGA)
— Encoding / Decoding
— Initial population
— Evolutionary mechanisms
— Problem independent / problem dependent components
— Multi-start strategy
— Specifying a BRKGA
— Application programming interface (API) for BRKGA

GECCO0'2016 — Denver, Colorado  July 20-24, 2016 BRKGA

Summary

e Applications
— 2-dim and 3-dim packing
— 3-dim bin packing
—Unequal area facility layout
—Routing in IP networks
—Redundant content distribution in IP networks
—Scheduling divisible loads

e Concluding remarks

GECCO0'2016 — Denver, Colorado  July 20-24, 2016 BRKGA

Reference

1 J.F.Goncalves and M.G.C.R,,

HEURISTICS

“Biased random-key genetic
algorithms for combinatorial
optimization,”

J. of Heuristics,

vol.17, pp. 487-525, 2011.

Tech report version:

http://mauricio.resende.info/doc/srkga.pdf

483 GECCO0'2016 — Denver, Colorado  July 20-24, 2016 BRKGA



Encoding with random keys GAs and random keys

e A random key is a real random number in the

, . e Mating is done using
continuous interval [O,1).

parametrized uniform
 Avector X of random keys, or simply random CrOSSOVEr  (Spears & Dedong . 1950)

keys, is an array of n random keys. a=(0.25,0.19,0.67, 0.05,0.89)

[} i [
For each gene, flip abiased | '3 00 076, 0.93. 0.08)

e Solutions of optimization problems can be coin to choose which ¢=(0.25.0.90, 0.76, 0.05, 0.89 )
encoded by random keys. parent passes the allele
. L . If every random-key array corresponds
e A decoder is a deterministic algorithm that takes (key, or value of gene) to i & el caluion: e dlveys
a vector of random keys as input and outputs a the child. produces feasible offspring.
feasible solution of the optimization problem.
GECCO0'2016 — Denver, Colorado % July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado % July 20-24, 2016 BRKGA
GAs and random keys GAs and random keys
Initial population is made up of P
* Introduced by Bean (1994) random-key vectors, each with N
for sequencing problems. keys, each having a value
e Individuals are strings of S=(0.25,0.19 0.67,0.05,089) denerated uniformly at random in
real-valued numbers s(1) s(2) s(3) s(4) s(5) the interval [O,1).
(random keys) in the
interval [O,1).
e Sorting random keys results  s'=(0.05,0.19, 0.25,0.67, 0.89 )
in a sequencing order. s(4) s(2) s(1) s@3) s(5)

Sequence:4—-2—-1-3-5

GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 484 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



GAs and random keys

Population K

At the K-th generation,
compute the cost of each
solution and partition the Elite solutions
solutions into two sets: elite
solutions and non-elite
solutions. Elite set should
be smaller of the two sets
and contain best solutions.

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

GAs and random keys

Population K

Evolutionary dynamics

— Copy elite solutions from population
K to population K+1

Elite solutions

— Add R random solutions (mutants)
to population K+1

— While K+1-th population < P

¢ RANDOM-KEY GA: Use any two
solutions in population K to produce
child in population K+1. Mates are
chosen at random.

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Population K+1

Elite solutions

Mutant
solutions

485

Biased random key genetic algorithm

e A biased random key genetic algorithm (BRKGA)
is a random key genetic algorithm (RKGA).

e BRKGA and RKGA differ in how mates are
chosen for crossover and how parametrized
uniform crossover is applied.

GECCO'2016 — Denver, Colorado « July 20-24, 2016

BRKGA

How RKGA & BRKGA differ

RKGA

both parents chosen at
random from entire
population

either parent can be
parent A in parametrized
uniform crossover

GECCO'2016 — Denver, Colorado « July 20-24, 2016

BRKGA

both parents chosen at
random but one parent
chosen from population
of elite solutions

best fit parent is parent A
in parametrized uniform
crossover

BRKGA



Biased random key GA

Population K
Evolutionary dynamics

— Copy elite solutions from population
K to population K+1

Elite solutions

— Add R random solutions (mutants)
to population K+1

— While K+1-th population < P

¢ RANDOM-KEY GA: Use any two
solutions in population K to produce
child in population K+1. Mates are
chosen at random.

e BIASED RANDOM-KEY GA: Mate elite
solution with other solution of
population K to produce child in
population K+1. Mates are chosen at
random.

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

BRKGA: Probability

child inherits
key of elite
parent > 0.5

Population K+1

Elite solutions

Mutant
solutions

Paper comparing BRKGA and Bean's

Method

Fosmn | Goncalves, R., and Toso,

- Jemisa - YAn experimental comparison of
biased and unbiased random-key

| Operaci

‘ genetic algorithms”,

Pesquisa Operacional, vol. 34, pp. 143-164,

2014,

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

cumulative probabil ity

486

08 -

cunulative probability

Pr(t

BRKGA —

RKGA

)=0.740

Probability computed with method
of Ribeiro et al. (2012)

set covering
problem: scp41

BRKGA —+—
RKIGFI ——

L
a 2800

GECCO'2016 — Denver, Colorado « July 20-24, 2016

Pr(t

GECCO'2016 — Denver, Colorado « July 20-24, 2016

4008

BRKGA ~

L
GoB8

fidzlal:]

L
1686888

L
128088 140688

iterations to target solution

)=0.999

R KGA

L
12z

iterations ta target salition

L
14

BRKGA

BRKGA

set covering
problem: scp51

BREGA
RINGA
i

16008




cumulative probabiliy

Framework for biased random-key genetic algorithms

' Generate P vectors Decode each vector
' of random keys of random keys
]

Pr(t <t )=0.847 ' Problem independent

BRKGA ~  RKGA

set k-covering -
problem: scp48-7

Classify solutions as Sort solutions by Stopping rule
elite or non-elite their costs satisfied?

Combine elite and

Copy elite solutions Generate mutants in non-elite solutions
— to next population next population and add children to
: i next population
GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA
Observations Decoding of random key vectors can be done in parallel
e Random method: keys are randomly generated so Generate P vectors Decoris eathvestor
solutions are always vectors of random keys of random keys of random keys

e Elitist strategy: best solutions are passed without change
from one generation to the next (incumbent is kept)

e Child inherits more characteristics of elite parent: Classify solutions as Sort solutions by Stopping rule
. . elite or non-elite their costs satisfied?
one parent is always selected (with replacement) from the
small elite set and probability that child inherits key of elite
parent > 0.5 Not so in the RKGA of Bean.

, ] Combine elite and
b NO mutation In crossover: mutants are used instead Copy elite solutions Generate mutants in non-elite solutions

to next population next population and add children to

(they play same role as mutation in GAs ... help escape local ————

optima)

GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 487 GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Is a BRKGA any different from applying BRKGA in multi-start strategy
the decoder to random keys?

output
incumbent

e Simulate a random multi-start decoding method
with a BRKGA by setting size of elite partition to e

rule

1 and number of mutants to P—1 satisfied 7

.........................................................................

e Fach iteration, best solution is maintained in elite

' Generate P vectors Decode each vector
set and P—1random key vectors are generated as | o ke o ke | P
mutants ... no mating is done since population |l eee e
: Classify solutions as Sort solutions by Restart rule : Incumbent

already has P individuals

elite or non-elite their costs faTo), satisfied?

Copy elite solutions Generate mutants in
to next population next population

GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Network monitor location problem (opt = 23)

solution i
nle8-i?=-n188-b188: GA and randon multi-start iterates
a9 T T T 09 i
H H GA +
rand nulti-start
: 0.8 - -
07 + 4
z
g °fr Randomized heuristic iteration
S o5 | count distribution: constructed 1
= . .
- k& by independently running the
@ g 04 + . .
] s algorithm a number of times, each
03 time stopping when the algorithm 1
finds a solution at least as good as a
0.2 + 1
given target.
01 + -
0 . .
10 100 1000 10000 100000
iterations to target solution

i
8.1 1 ia 188 1088

Time (ibm t41 secs)

GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 488 GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



(1}:] ‘r.-- j_ o (1}:] j‘l-- j_ i I
08 | { ] 08 | { ]
0T F ;’ = 0T F ;’ =
g 08 } 4 1 g 06 + ff i
. D3 F - . D3 F / -
0z F ] - 02 k i 4
0l /;/ it /f/
o j-- - - o “j-- s - -
10 100 1000 10000 100000 10 100 1000 10000 100000
teraticns to target solution fterations to target solution
In most of the independent runs, the algorithm finds the target solution in However, some runs take much longer: 5% of the runs take over 2000
relatively few iterations: 25% of the runs take fewer than 101 iterations iterations
GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA
0.4 Fa 8 = 0.4 Fa 8 =
08 | { ] 08 | { ]
07 ; 1 07 t f 1
£ o / - ¥ ol {/ -
. D3 / < . 03 b / 4
0z F £ - 02 k i 4
0l /;/ it /f/
0 £, . " - - 0 o A L " .
10 100 1000 10000 100000 10 100 1000 10000 100000
teraticns to target solution fterations to target solution
In most of the independent runs, the algorithm finds the target solution in However, some runs take much longer: 2% of the runs take over 9715
relatively few iterations: 75% of the runs take fewer than 345 iterations iterations

GECC0'2016 — Denver, Colorado  July 20-24, 2016 BRKGA 489 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



cumulaive probability

09

08

0T r

D&

05

04

[P

01

L i
100 1000

10000 100000

nerations o target solution

However, some runs take much longer: the longest run took 11607
iterations

03

08

07 F

cumulaive probatediny

03 r

02

01 ¢

06

05

04

GECCO'2016 — Denver, Colorado « July 20-24, 2016

BRKGA

f"
{
‘I‘
/
."r
F 4
f
f."
e
o ¢ . Y
100 1000 10000

iterations to target solmion

GECCO'2016 — Denver, Colorado « July 20-24, 2016

100000

BRKGA

Probability that algorithm will take
over 345 iterations: 25% = 1/4

By restarting algorithm after 345
iterations, probability that new run
will take over 690 iterations: 25% =
1/4

Probability that algorithm with
restart will take over 690 iterations:
probability of taking over 345 X
probability of taking over 690
iterations given it took over 345 =
VaxVa=1/4

490

03

08

07 F

cumulaive probatediny

03 r

02

01 ¢

06

05

04

T | Probability that algorithm will still be
of running after K periods of 345
j | iterations: 1/4

If” For example, probability that
/ | algorithm with restart will still be
/ | running after 1725 iterations (5
/) | periods of 345 iterations): 1/4° =
W 20 0.0977%

10

100 1000 10000 100000
Iterations 1o target solmon

This is much less than the 5%
probability that the algorithm
without restart will take over 2000
iterations.

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Restart strategies

First proposed by Luby et al. (1993)

They define a restart strategy as a finite sequence
of time intervals S = {T], T, T } which define

epochs T T]+T2, T1+T2+T3, ... when the
algorithm is restarted from scratch.

Luby et al. (1993) prove that the optimal restart
strategy uses T =T =T=""= T*, where ™ isa

constant.

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA



Restart strategy for BRKGA

e Recall the restart strategy of Luby et al. where equal time
intervals T=T=T,=7= T* pass between restarts.

e Strategy requires T* as input.
¢ Since we have no prior information as to the runtime
distribution of the heuristic, we run the risk of:

— choosing T too small: restart variant may take long to
converge

— choosing T too big: restart variant may become like no-
restart variant

GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Restart strategy for BRKGA

e We conjecture that number of iterations between
improvement of the incumbent (best so far) solution
varies less w.r.t. heuristic/ instance/ target than run
times.

e We propose the following restart strategy: Keep track of
the last generation when the incumbent improved and
restart BRKGA if K generations have gone by without
improvement.

e We call this strategy restart(K)

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

491

Example of restart strategy for BRKGA: Telecom application

1

o9 | restart strategy:
restart(2000);

T =
Iy

e
o
#

<" no restart

08

o7 r

06

05

04

cumulative probability

03

02

01

with restart ——
without restart ——«—

1000

100,000 1,000,000 10,000,000
iterations to BKS
GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

10,000

Specifying a biased random-key GA

e Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

e Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

e Parameters

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA



Specifying a biased random-key GA brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R.,
“A C++ Application Programming Interface

— Size of elite partition: 15-25% of population for Biased Random-Key Genetic A|gorithms,"
— Size of mutant set: 5-15% of population Optimization Methods & Software, vol. 30, pp. 81-93, 2015.

Parameters:

— Size of population: a function of N, say N or 2N

— Child inheritance probability: > 0.5, say 0.7

— Restart strategy parameter: a function of N, say 2N or TON Software: http://mauricio.resende.info/src/brkgaAPI
— Stopping criterion: e.g. time, # generations, solution quality,
# generations without improvement

GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

brkgaAPIl: A C++ API for BRKGA

o FEfficient and easy-to-use object oriented application A n exa m P I e B R KGA:

programming interface (API) for the algorithmic framework
of BRKGA.

e (Cross-platform library handles large portion of problem Pa C kl n g We I g h ted

independent modules that make up the framework, e.g.

rectangles

— evolutionary dynamics

e Implemented in C++ and may benefit from shared-memory
parallelism if available.

e User only needs to implement problem-dependent decoder.

GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 492 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Constrained orthogonal packing

Reference
e r[i] rectangles of type i =1, ..., N are to be packed in the

large rectangle without overlap and such that their edges

JF. Gongalves and R, “A parallel multi- are parallel to the edges of the large rectangle;

population genetic algorithm for a . Fori=1 N, we require that:
constrained two-dimensional orthogonal S 0 <Plil< r[i] < Q[i]

packing problem," Journal of Combinatorial
Optimization, vol. 22, pp. 180-201, 2011.

Tech report:
http://mauricio.resende.info/doc/pack2d.pdf H Suppose 5= r[1] < 12
GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA
Constrained orthogonal packing Constrained orthogonal packing
e Given a Iarge P|anar stock rectangle (W, H) of width  r[i] rectangles of type i=1, ..., N are to be packed in the
W and height H: large rectangle without overlap and such that their edges

) ) _ are parallel to the edges of the large rectangle;
e Given N smaller rectangle types (wl[il, h[i]),

i=1,..,N, each of width wl[i], height h[i], and value
vlil;

e Fori=1, ..., N, we require that:
0 <Plil=< rli] < Qfil

W

Suppose 5511112

H
2 4

GECC0'2016 — Denver, Colorado  July 20-24, 2016 BRKGA 493 GECCO0'2016 — Denver, Colorado % July 20-24, 2016 BRKGA




Obijective

Among the many feasible packings, we want to find one that
maximizes total value of packed rectangles:
vl r[1]1+v[2] r[2] + - - - 4+V[N] r[N]

GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Applications

Problem arises in several production processes, e.d.
— Textile
— Glass
— Wood
— Paper
where rectangular figures are cut from large
rectangular sheets of materials.

GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

50 2D-HopperTP12-1-49-3591.txt: 3591

Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591

New best known solution!
Previous best: 3580 by a
Tabu Search heuristic
(Alvarez-Valdes et al., 2007)

10 20 30 40

GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

BRKGA for
constrained 2-dim
orthogonal packing

494 GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Encoding

e Solutions are encoded as vectors X of
2N'=2{Q[1]+Q[2] +--- +QIN] }
random keys, where Q[i] is the maximum number
of rectangles of type i (fori=1, ..., N) that can be
packed.

o X=(X[1], ..., X[N], XIN'+11], ..., X[2N'] )

Rectangle type Vector of placement
packing sequence procedures (VPP)
(RTPS)
GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA
Decoding

e Simple heuristic to pack rectangles:
— Make Q[i] copies of rectangle i, fori=1, ..., N.

— Orderthe N'=Q[1]+Q[2] + --- + Q[N] rectangles in
some way. Sort first N' keys of X to obtain order.

— Process the rectangles in the above order. Place the
rectangle in the stock rectangle according to one of
the following heuristics: bottom-left (BL) or left-
bottom (LB). If rectangle cannot be positioned,
discard it and go on to the next rectangle in the
order. Use the last N' keys of X to determine which

heuristic to use. If k[N'+i] > 0.5 use LB, else use BL.
GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Decoding

e A maximal empty rectangular space (ERS) is an empty
rectangular space not contained in any other ERS.

e ERSs are generated and updated using the Difference
Process of Lai and Chan (1997).

* When placing a rectangle, we limit ourselves only to
maximal ERSs. We order all the maximal ERSs and place
the rectangle in the first maximal ERS in which it fits.

e |et (x[i], y[i]) be the coordinates of the bottom left

corner of the i-th ERS. "
ERS

x[i], yli
GECC0'2016 — Denver, Colorado + July 2(0-5, X(gl]é) BRKGA

Decoding

e [f BL is used, ERSs are ordered such that
ERSI[i] < ERS[j] if y[i] <ylj] or y[i] = y[j] and

x[i] < x[jl.
- -
ERSJi] < ERSJj]
495 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



GECCO'2016 — Denver, Colorado « July 20-24, 2016

Decoding
2 4
e [f LB is used, ERSs are ordered such that

ERS[i] < ERSJ[j] if x[i] < x[j] or x[i] = x[j] and
ylil <yljl.

BL can run into problems even
on small instances (Liu & Teng, 1999).

Consider this instance with 4
rectangles. ERSJi]

BL cannot find the optimal
solution for any RTPS. ERS[i] < ERSJj]

BRKGA GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Similar infeasibilities
are observed if 2, 3,
or 4 is the first
rectangle in the
RTPS.

RTPS: 1-2-3-4

RTPS: ] —4—2—3 t

RTPS: 1-4-3-2

RTPS: 1-3-2-4

GECCO'2016 — Denver, Colorado « July 20-24, 2016

RTPS: 1-3-4-2

BRKGA 496 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA




aL







GECCO'2016 — Denver, Colorado « July 20-24, 2016

GECCO'2016 — Denver, Colorado « July 20-24, 2016

BRKGA

BRKGA

4

BL

4 does not fit
in ERS[1].

4

BL

4 does fit
in ERS[2].

Optimal solution!

2
BL

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Design

e \We compare solution values obtained by the
parallel multi-population BRKGA with solutions
obtained by the heuristics that produced the best
computational results to date:

— PH: population-based heuristic of Beasley (2004)

— GA: genetic algorithm of Hadjiconsantinou & lori
(2007)

— GRASP: greedy randomized adaptive search
procedure of Alvarez-\aldes et al. (2005)

— TABU: tabu search of Alvarez-Valdes et al. (2007)

499 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



2D-ngcutcon18-20678.txt: 20678 New BKS

Number of best solutions / total instances

fora 100 x100
doubly
Problem -- GRASP |TABU S'ffsofw constrained
instance of
Fekete &
Schepers (1997)
Large  0/21 0/21 5/21 8/21 20/21 of value 20678,
random’ Previous best
was 19657 by
tabu search of
Doubly  11/21 12/21  17/21 19121 Alvarez Valdes et
constrained al., (2007).
30 types
* For large random: number of best average solutions / total instance classes 30 rectangles
1
20 40 60 100
GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Minimum, average, and maximum solution 2D-ngcutcon21-22140-1.txt: 22140 New BKS for a 100
times (secs) for BRKGA (BL-LB-L-4NR)

Problem Min solution Avg solution Max solution
time (secs) |time (secs) |time (secs)

a0 x 100 doubly

constrained
instance Fekete &

Schepers (1997) of
Previous BKS was
Large random 1.78 23.85 72.70 22011 by tabu
search of Alvarez-
Doubly 16.87
constrained

29 types
97 rectangles

20 40 60

GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 500 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Some remarks

We have extended this to 3D packing:
computer: J.F. Goncalves and M.G.C.R., “A parallel multi-population biased
il random-key genetic algorithm for a container loading
k. problem,” Computers & Operations Research, vol. 29, pp. 179-190,
2012.

Tech report: http://mauricio.resende.info/doc/brkga-pack3d.pdf

J.F. Goncalves and R., "A biased random-key
i genetic algorithm for 2D and 3D bin

packing problems," International J. of
Production Economics, vol. 15, pp. 500-510, 2013.

http://mauricio.resende.info/doc/brkga-binpacking.pdf

GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

3D bin packing problem

Minimize number of containers
Container (bin) of (bins) needed to pack all boxes

fixed dimension h
3D bin packing

Boxes of different dimensions

GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 501 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



3D bin packing constraints

e Each box is placed completely within container
* Boxes do not overlap with each other
e Each box is placed parallel to the side walls of bin

* |n some instances, only certain box orientations
are allowed (there are at most six possible
orientations)

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Six possible orientations for each box

B
P §

5

©

- -
©

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Difference process - DP
(Lai & Chan, 1997)

When box is placed in container ...
use DP to keep track of maximal free spaces

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Encoding

Solutions are encoded as vectors of 3n random keys,
where n is the number of boxed to be packed.

LX)

X=(x,x,...,x,x , X , X
1 2 n 2n+] 2nt2 3n

1’ T2t '

X
2n

Box packing sequence Placement heuristic Box orientation

502 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Decoding Experiment

1) Sort first n keys of X to produce sequence boxes will be packed;

e \We compare BRKGA with:

2) Use second n keys of X to determine which placement heuristic to

use (back-bottom-left or back-left-bottom): — TS3, the tabu search of Lodi et al. (2002)
if x__<Y2 then use back-bottom-left to pack i-th box — GLS, the guided local search of Faroe et al. (2003)
if x> V2 then use back-left-bottom to pack i-th box — TS2PACK, the tabu search of Crainic et al. (2009)
3) Use third n keys of X to determine which of six orientations to — GRASP, the greedy randomized adaptive search
use when packing box: procedure of Parreno et al. (2010)

X € [0,1/6): orientation 1;

x, . € [1/6,2/6): orientation 2; ...

X € [5/6,1]: orientation 6.

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Decoding Summary

For each box

BRKGA| _GRASP TSZPACK | GLS
— scan containers in order they were opened

100° 127.3 127.3 127.9 128.2 128.3
— use placement heuristic to place box in first container in 2 100° 125.5 125.8 126.8
which box fits with its specified orientation 3 100° 126.5 126.9 127.5
— if box does not fit in any open container, open new 4 100° 294.0 294.0 294.0 293.9 294.2
. . . . . . 3
container and place box using placement heuristic with its 2 L) (Ut (-3 s e s
e . . 6 10° 95.0 95.4 96.1 95.8 96.0
specified orientation
7 40° 58.2 59.4 60.0 59.0 59.0
8 100° 80.9 82.0 82.6 81.9 81.9

- Sumiowsiey| oms om3 e |

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 503 GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



15

TL30 (31454.23)

1 TL30

New best known
1 Solution: 31454.2

Previous best known

1 Solution; 33721.5
TSaST (Scholtz et al., 2009)

GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

OSPF routing in IP
networks

GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

The Internet

e The Internet is composed of
many (inter-connected)
autonomous systems (AS).

e An AS is a network controlled
by a single entity, e.g. ISP,
university, corporation,
country, ...

GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Routing

e A packet is sent from a origination router S to a
destination router T.

e Sand T may be in
—same AS: [GP routing
— different ASes: BGP routing

504 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



IGP Routing

e [GP (interior gateway
protocol) routing is
concerned with
routing within an AS.

e Routing decisions are

AS made by AS operator.
GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA
BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

Peering points

Ingress point

Egress point

Peering points

GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

[GP Routing

GECCO0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

OSPF routing

e Given a network G = (N,A), where N is the set of
routers and A is the set of links.

e The OSPF (open shortest path first) routing
protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.

S

Traffic splitting >

505 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Packet routing OSPF routing

Packet's final

. Routing table is filled
When packet arrives at router,

destination. ROUting table with first hop routers
router must decide where to for each possible destination.
. ute ad route
send it next. router router
router router First hop routers.
router Routing consists in finding a
link-path from source to ©
Routing table destination.
GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

OSPF routing OSPF weight setting

o Assign an integer weight € [1, w__] to each link e (OSPF weights are assigned by network operator.
’ max
. — CISCO assigns, by default, a weight proportional to the
= =716 _

in AS. In general' W ax 65535=2 . inverse of the link bandwidth (Inv Cap).
e Each router computes tree of shortest weight — If all weights are unit, the weight of a path is the number of

paths to all other routers in the AS, with itself as hops in the path.

the root, using Dijkstra’s algorithm e We propose two BRKGA to find good OSPF weights.
GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 506 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Minimization of congestion

e Consider the directed capacitated network G = (N, A,c),
where N are routers, A are links, and c, is the capacity

of link a € A.

e \We use the measure of Fortz & Thorup (2000) to
compute congestion:

Q=@ () +D,L)+...+ D, (/)
where [ is the load on link a € A,
® (/) is piecewise linear and convex,
® (0)=0, forallae A

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Piecewise linear and convex ® (/)

link congestion measure

70 T T : T
slope=5000 — |
60

o
o

slope = 500 /

N
o
I

w
o
T

N
o

cost per unit of capacity

slope=3  slope=10 /

1 slope=1 \ \ / |
.~
. Y < slope=70
0 02 04 06 0.8 1 1.2 (/a /Ca)

trunk utilization rate

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

OSPF weight setting problem

* Given a directed network G= (N, A) with link
capacities ¢, € A and demand matrix D = (d,)

specifying a demand to be sent from node s to

node t:

— Assign weights w, €[1, w__ ] to each link a €A,
such that the objective function ® is minimized

when demand is routed according to the OSPF
protocol.

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

BRKGA for OSPF routing in IP networks

M. Ericsson, M.G.C.R., & P.M. Pardalos, “A genetic
algorithm for the weight setting problem in OSPF
routing,” J. of Combinatorial Optimization, vol. 6, pp.
299-333, 2002.

Tech report version:

http://www?2.research.att.com/~mgcr/doc/gaospf.pdf

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA



Tier-1 ISP backbone network (90 routers, 274 links)

BRKGA for OSPF routing in IP networks

_ 2 Weight setting with GA !
Ericsson, R., & Pardalos (J. Comb. Opt., 2002) Ll permits a 50% increase in - |
. E dina: traffic volume w.r.t. weight
nhcoding: L6 e | setting with the Inverse il
— Avector X of N random keys, where N is the number of links. The 14 L Capacity rule. i
i-th random key Corresponds to the i-th "nk Weight' é 1 2 A . R i o PR e . o
e Decoding; = X ' '
£
— Fori=1,... N: setw(i) = ceil (X() xw ) § el |
— Compute shortest paths and route traffic according to OSPF. : 06 L |
— Compute load on each link, compute link congestion, add up all al |
link congestions to compute network congestion. _ :
02 F - < T S : o ;.Ig;égg ii:i:._
0 | | i i LP LB —%—
0 10000 20000 30000 40000 50000
demand
GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA
‘ : ‘ ‘ : ‘ : ‘ : Improved BRKGA for OSPF routing in IP networks

Tier-1 ISP backbone network (90 routers, 274 links)
o L.S. Buriol, M.G.C.R., C.C. Ribeiro, and M. Thorup, “A
hybrid genetic algorithm for the weight setting problem
in OSPF/IS-IS routing,” Networks, vol. 46, pp. 36—56,
4 2005.

cost

~“GAsolutions -

100

Tech report version:

LP lower
bound

i : : : : : : : : : http://www?2.research.att.com/~mgcr/doc/hgaospf.pdf

o =n 4nn 150 200 250 300 350 400 450 500

generation

GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA 508 GECCO'2016 — Denver, Colorado + July 20-24, 2016 BRKGA



Improved BRKGA for OSPF routing in IP networks
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

e Encoding:

— A vector X of N random keys, where N is the number of links.
The i-th random key corresponds to the i-th link weight.

e Decoder:
—Fori=1, .. N: setw()=ceil ( X(i) x wmax)

— Compute shortest paths and route traffic according to OSPF.

— Compute load on each link, compute link congestion, add up
all link congestions to compute network congestion.

— Apply fast local search to improve weights.

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

Decoder has a local search phase

Population K

Population K+1

Elite solutions

Elite solutions

Mutant
solutions

Biased coin flip crossover

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA

509

Fast local search

o Let A* be the set of five arcs ac A having
largest @, values.
e Scan arcs ae A* from largest to smallest @
= [ncrease arc weight, one unit at a time, in the range
—w,)/4] ]

= [f total cost @ is reduced, restart local search.

[w,, w, + [(w

max

GECC0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Effect of decoder with fast local search

1000

Improved: Buriol, R.,
Ribeiro, and Thorup

Improved BRKGA:

Finds solutions faster
Original: Ericsson,

R., and Pardalos
(2002)

Finds better solutions
100

cost

LP lower bound

o] 50 100 150 200 250 300

time (seconds)

GECC0'2016 — Denver, Colorado # July 20-24, 2016 BRKGA



Summary System model and problem formulation

@ Divisible load scheduling » Interconnection topology: star network
@ Divisible load model > Dedicated grid
@ System model and problem formulation » Model: one master - n workers

@ Related work > Master owns the total load W
© BRKGA: Biased random keys genetic algorithm » No communication/computation overlap in any processor
» No communication overlap through the master

© Computational experiments
@ Test environment o o °
@ Instances
@ Numerical results

@ Concluding remarks and extension to multi-round scheduling
@ Concluding remarks ° °

@ Extension to multi-round scheduling

Divisible load model System model and problem formulation

» Load may be split continuously into arbitrarily many small chunks
» Single-round scheduling

> Each processor receives portion «; of total load
> Master takes ¢g; + G;a; time units to send the data to processor P;

|:ﬁil';liﬁil%liﬁﬁﬁimim IO:'H%F'E Hh’H "‘: : ifoid "Eliﬁiﬁ%ﬁliﬁﬁ > Processor P; takes w;ca; time units to process data

. = | Fixed latency g,

» No precedence constraints

............

HeehkHabe R EER T —_——
R e 1 : .

A 1 Variable communication f/"' (e —
" time G;q; i -
; E l Variable computation

time w;a;

Makespan

510

Divisible load scheduling Divisible load scheduling




Single-round scheduling

» Non-optimal scheduling:

Giaphical schochie | Gid | Sehodhie | Tiaca Fie |

2 iy
| » T,
| mo L
| L]

L

Divisible load scheduling

Multi-round scheduling

Communication/computation

concurrency

Gt whede |Gl | Schedbe | Tace Fie | / ;

. k] u

n | Kz ez ()

] L= ! 1‘-1!

M = Il I

: prerererm ———

" | & x|

. — -

New round ‘ ‘ New round ‘

» This work: single-round problem

Divisible load scheduling

Single-round scheduling

» Optimal scheduling:

Giaphical schochie | Gid | Sehodhie | Tiaca Fie |

Divisible load scheduling

Single-round scheduling

» Problem consists of determining ...

> the processors to be used,
> their activation order,
> and their loads,

> ...s0 as to minimize the makespan

511

Divisible load scheduling




BRKGA: Decoder for DLS-SR BRKGA: Decoder for DLS-SR

» BRKGA for DLS-SR evolves a population of chromosomes that

consists of vectors of real numbers (keys). » Given some activation order, the algorithm starts by sending all

. . the load exclusively to the first )
» Each solution represented by keys in the range [0, 1), one key for ¢ Joac CXCISIVELY 10 TRE ISt Drocessor

each processor » Number ¢ of processors is iteratively increased from 1 to n, until

th k deteriorates (li 10-12).
» Each solution is decoded by a heuristic that receives the vector of e makespan deteriorates (lines )

keys and builds a feasible solution for DLS-SR. » Optimal number of processors is set as £* = ¢ — 1 (lines 18-23).

» Solution quality depends on the order in which the processors are > Compute the load - sent to the last processor (line 24).

routed. » Loads «;, for ¢ = 1,...,¢* — 1, are recursively computed from ¢*

» The decoding consists of two steps: first, the processors are sorted. (lines 25-27).

in a non-decreasing order of their random keys; next, the resulting » Decoder implements these computations in time O(n).
order is used as the input for the decoder heuristic.

BRKGA: Biased random keys genetic algorithm BRKGA: Biased random keys genetic algorithm

» Decoder: AlgRap algorithm of Abib and Ribeiro (2009). » BRKGA-DLS implemented in C+-+ and compiled with GNU C4+
» Given a permutation of the processors in P, the decoder computes version 4.6.3.
in O(|P|) time the set of active processors and the amount of load » Experiments performed on a Quad-Core AMD Opteron(tm)
that has to be sent to each of them to minimize the makespan. Processor 2350, with 16 GB of RAM memory.
» In addition to the number of processors and all their data, this » Comparisons with CPLEX, HeuRet, and multistart procedure
algorithm takes as input a vector 7 describing the activation order, MS-DILS.
such that 7(7) = j indicates that processor j is the i-th to be

» Version 12.6 of CPLEX was used and the maximum CPU time

activated, for i, =1,...,n. was set to 24 hours.

» For instance, if n = 3 and m =< 2, 3,1 >, then processor 2 is the
first to be activated, processor 3 is the second, and processor 1 is
the third.

» Ten runs of each heuristic for each instance, with different seeds
for the random number generator.

BRKGA: Biased random keys genetic algorithm 5 Computational experiments



Instances Average percent relative reduction over the 720

instances of the best, average and worse solution values

found by BRKGA-DLS with respect to those obtained
by MS-DLS

» Instances used in the three first experiments: same proposed in
7.00%

Abib and Ribeiro (2009). o0y 5:98%
» 120 grid configurations with n = 10, 20,40, 80, 160 worker 500% e -
processors and eight combinations of the parameters ¢;, G; and w;, 3.00%
i=1,...,n, each of them ranging either in the interval [1, 100] 2.00%
(low) or in the interval [1000, 100000] (high). oo

Worst Average Best

» Average solution values found by BRKGA-DLS were 4.95% better
than those provided by MS-DLS.

» BRKGA-DLS identifies the relationships between keys and good
solutions, making the evolutionary process converge to better
solutions faster than MS-DLS.

Computational experiments 22 Computational experiments

Numerical results Summary of the numerical results obtained with
BRKGA-DLS, HeuRet, and MS-DLS for 720 test
instances

» The first experiment: evaluates if BRKGA-DLS efficiently
identifies the relationships b.etween keys and good solutions and » In the second experiment, we compare BRKGA-DLS with HeuRet,
converges faster to near-optimal solutions. and MS-DLS. HeuRet is a deterministic algorithm, while the

» We compare its performance with that of the multi-start others are randomized.
procedure. MS-DLS  HeuRet BRKGA-DLS

» Each iteration of MS-DLS procedure applies the same decoding Optimal values (over 497 instances) 177 320 413

s s . Best values (over 720 instances) 189 313 645

heuristic of BRKGA-DLS, but using randomly generated values Best values (over 7200 runs) 2166 - 6191
for the keys. Score value 803 112 1

» BRKGA-DLS was run for 1000 generations and MS-DLS for
1000 x | V| iterations, where | V| = 5 x | P| is the population size of > “score” represents the sum over all instances of the number of
BRKGA-DLS (same number of solutions are evaluated and methods that found strictly better solutions than the specific
compared). heuristic being considered: best heuristics have lower score values.

» BRKGA-DLS outperformed the previously existing HeuRet
heuristic and MS-DLS with respect to all measures considered.
513

Computational experiments Computational experiments



New instances Extension: Multi-round scheduling

» Extension of this approach to the harder case of multi-round (or
multi-installment) scheduling.

» 20 new, larger, and more realistic instances with |P| = 320 and
W = 10, 000.

> The values of G; and g¢; have been randomly generated in the
ranges [1,100] and [100,100.000], respectively.

» Differently from Abib and Ribeiro (2009), the values of w; have
been randomly generated in the interval [200, 500].

» Load is distributed to the active processors in several consecutive
bursts, reducing the waste in each processor and making better use
of the resources to reduce the overall makespan.

» Concurrency between communication in burst £ + 1 and
computation in burst k.

» Multi-round scheduling consists of determining ...

> These values are more realistic, since the processing rate of a real > not only the processors to be used, their activation order, and their

computer is always larger than its communication rate. loads,
» BRKGA-DLS stops after | P| generations without improvement in > but also the number of rounds. ..
the best solution found. > ...s0 as to minimize the makespan.

» On average, BRKGA improved the makespan obtained by closed
forms of Shokripour et al. (2012) by 12%.

Computational experiments g Concluding remarks and extension to multi-round scheduling

» Makespan obtained by BRKGA-DLS is always smaller than that
given by HeuRet.
» Coefficient of variation of BRKGA-DLS is very small, indicating
its robustness. )

» Percent relative reduction of BRKGA-DLS with respect to HeuRet
amounted to 3.19% for instance dls.320.10 and to 2.38% on

average. These slides and all of the papers cited in this

» Although the running times of BRKGA-DLS are larger than those lecture can be downloaded from my homepage.
of HeuRet, their average values never exceeded the time taken by '

HeuRet by more than 30 seconds.

» Larger running times are not a major issue in practice (parallel http://mauricio.resende.info
processing).

514 GECCO0'2016 — Denver, Colorado + July 20-24, 2016 BRKGA

Computational experiments





