
Solving Maximum Cut Problem with an Incremental
Genetic Algorithm

Jinhyun Kim
School of Computer Science &

Engineering
Seoul National University
1 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
jh@soar.snu.ac.kr

Yourim Yoon
Department of Computer

Engineering
College of IT

Gachon University
Gyeonggi-do 461-701, Korea
yryoon@gachon.ac.kr

Byung-Ro Moon
School of Computer Science &

Engineering
Seoul National University
1 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
moon@snu.ac.kr

ABSTRACT
In this paper, we propose an incremental genetic algorithm
applied to solve the maximum cut problem. We test the
implementation of the algorithm on benchmark graph in-
stances. We propose several methods to build up the se-
quence of subproblems, and they are tested through exper-
iments. The performance of a genetic algorithm makes an
improvement when the incremental approach is applied with
respect to an appropriate sequence of subproblems.

Keywords
Incremental genetic algorithm; maximum cut problem

1. INTRODUCTION
Graphs are representative discrete data structures, and

there are lots of important combinatorial optimization prob-
lems on graphs. For the problems that are classified as
NP-hard problems, we need to examine an extreme num-
ber of combinations to find a good solution. Genetic al-
gorithms(GAs), and other stochastic approaches are widely
used to deal with this difficulty.

In contrast to NP-hard graph problems, there exist poly-
nomial time algorithms for some of the graph problems in P
class. The algorithms for these problems are often a greedy
method or a dynamic programming. Both of them rely on
the optimal substructure of the problem, which is a property
that optimal solutions of subproblems could be extended to
an optimal solution of the original problem.

The idea of utilizing optimal substructure could be applied
to solve NP-hard graph problems, by means of an incremen-
tal genetic algorithm(IGA). IGA solves a graph problem in
multiple steps, and a subproblem is tackled at each step.
The algorithm begins with solving a small subproblem and
the problem is gradually expanded to the original problem.
The subgraph isomorphism problem(SIP) was tackled in this

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2908976

manner, and the subproblem was defined by the subgraph
structure [1]. When the subproblems are expanded in an
appropriate way, the incremental approach has brought a
significant performance improvement upon it’s predecessor.

In this paper, we investigate the mechanism of an IGA for
graph problems through empirical analysis. We propose an
IGA applied to the maximum cut problem(MCP) [2]. We
use the natural subproblem structure defined by the sub-
set of the edges, and we seek methodologies to build up a
fine sequence of subproblems. Results of the experiments to
verify our analysis are provided with discussions. Using an
incremental approach in an appropriate way has brought a
performance improvement, and the incremental genetic al-
gorithm was able to find a better graph cut.

2. GENETIC FRAMEWORK
We use a typical GA with and without incremental ap-

proach in our experiment. The operators and parameters
are as follows.

• Population management: The size of the popula-
tion is 100. Twenty new offspring are generated in each
generation. The best 100 out of 120 chromosomes sur-
vive. The population is randomly initialized in the first
step of the IGA, and is reused in the rest of the steps.

• Representation: We use a binary representation. If
a chromosome has a different number of 0s and 1s, we
randomly repair it.

• Selection: We randomly select eight chromosomes
and run a tournament. The better chromosome wins
the match with probability 80%. The best two chro-
mosomes are finally selected.

• Crossover and Mutation: We use a uniform cross-
over and a random mutation. Based on Hamming
distance, we first normalize the chromosomes before
crossover. Each gene is inherited from one of the two
parents with equal probability, and is toggled after-
ward with 0.5% of chance.

• Stopping criterion: For a fair comparison, we use a
fixed number of generations. We use 105 for a tradi-
tional GA, and it is evenly distributed to each step for
an IGA.

49



Table 1: The performance of the tested GA and IGAs for the MCP

G GA
E-IGA V-IGA M-IGA

Random Degree BFS Random Degree BFS Random Degree BFS

1 11411.00 11373.20 11290.10 11283.90 11404.40 [11411.90] 11408.90 11366.40 11400.60 11384.70
2 11416.90 11379.00 11249.30 11290.20 11409.60 [11417.10] 11415.10 11371.50 11392.20 11389.20
3 11412.10 11375.60 11325.10 11286.50 11404.90 11410.10 11409.50 11365.70 [11435.30] 11385.30
4 11425.70 11386.00 11271.50 11299.00 11423.20 [11442.40] 11425.80 11380.10 11413.90 11398.50
5 11417.00 11380.40 11258.10 11291.00 11414.40 [11450.10] 11418.70 11374.50 11379.60 11391.20
14 2983.84 2964.97 2964.66 2962.03 2989.07 2991.89 [2998.08] 2971.87 2978.91 2982.76
15 2964.75 2946.12 2944.23 2944.41 2970.86 2973.65 [2979.85] 2953.22 2954.62 2961.28
16 2969.65 2951.15 2946.89 2944.18 2974.30 2981.32 [2983.94] 2957.30 2961.99 2965.21
17 2965.15 2946.83 2941.05 2943.74 2971.31 2973.53 [2980.29] 2954.07 2958.31 2962.56
43 6466.47 6410.77 6379.89 6375.71 6453.73 [6474.56] 6465.18 6423.30 6435.21 6443.29
44 6463.19 6408.30 6379.05 6370.58 6450.29 [6470.49] 6461.40 6418.64 6457.53 6439.86
45 6462.90 6406.78 6376.12 6370.45 6448.72 [6469.92] 6461.25 6419.64 6435.69 6440.85
46 6465.33 6410.04 6379.09 6372.30 6451.85 [6475.64] 6462.22 6422.36 6441.94 6443.28
47 6470.45 6414.29 6376.46 6376.91 6457.16 [6475.07] 6467.70 6426.59 6430.64 6448.11
51 3742.54 3710.64 3713.08 3698.30 3743.31 3750.27 [3757.44] 3720.95 3717.56 3727.72
52 3746.41 3715.03 3715.55 3706.69 3747.10 3749.51 [3761.92] 3725.74 3730.79 3737.34
53 3745.21 3712.13 3716.28 3704.69 3745.72 3748.51 [3758.96] 3723.85 3729.02 3733.04
54 3745.05 3712.70 3710.18 3707.08 3744.94 3745.10 [3758.62] 3724.93 3736.54 3735.34

3. SEQUENCE OF SUBPROBLEMS
The IGA solves the problem through solving a sequence

of subproblems [1]. We first set the virtual 0th subproblem
to be a graph having no edges. The rest of the subproblems,
from the first one to the last one, are obtained by adding
some edges to the previous graph. We tried three different
graph expansion methods described below.

• Edge-wise expansion(E-IGA): An edge is added to
the previous graph at each step. The number of the
steps equals the number of the edges.

• Vertex-wise expansion(V-IGA): A vertex is consid-
ered at each step. The incident edges connected to a
vertex that has already considered in the previous step
are added to the graph. This method is conceptually
identical to adding the considered vertex at each step.
The number of the steps equals the number of the ver-
tices.

• Mixed expansion(M-IGA): A vertex is considered
at each step and all of the incident edges are added to
the previous graph. The philosophies of the two above
methods are mixed in this one. The number of the
steps equals the number of the vertices.

Determining the order of the edges or the vertices being
considered at each step is another design issue. We tried
three different ordering schemes; random ordering, degree
based ordering(decreasing order), and BFS based ordering.

4. RESULTS AND DISCUSSIONS
The proposed algorithm was tested on benchmark graphs

called G-set [2]. Table 1 shows the average cut size found
by the algorithms. The average cut size is marked in bold if
it is greater than the result of the traditional GA. And for
each of the graph instances, we parenthesized the value by
a square bracket, if it is the best result.

E-IGA and M-IGA were not effective for almost all of
the cases regardless of the ordering scheme used. It was

reported that falling in a bad local optimum is critical for
the MCP, and most of the near state-of-the-art algorithms
have a routine to avoid such situation [2]. Expanding the
graph in the edge-wise way and in the mixed way as proposed
seem to reinforce this situation.

There was no universally notable ordering scheme, and the
characteristic of the graph decides which scheme works best
on that graph. Basically, the vertex degree was a key fac-
tor for random graphs(1–5, 43–47), as degree based ordering
showed the best result. For the random planar graphs(14–
17, 51–54) having geometric property, the BFS ordering
scheme seems to capture this property. When used with
an appropriate ordering scheme, the incremental approach
was effective.

5. CONCLUSION
In this paper, we analyzed incremental genetic algorithms

for graph problems. A brief description of the process of
an incremental genetic algorithm for a graph problem was
given, and it was described in terms of a subproblem se-
quence. Graph expansion methods, reordering schemes, and
their combinations were proposed and tested. Through ex-
periments, we found an evidence that incremental approach
is useful.

6. ACKNOWLEDGMENTS
The ICT at Seoul National University provided research

facilities for this study.

7. REFERENCES
[1] H. Choi, J. Kim, and B.-R. Moon. A hybrid incremental

genetic algorithm for subgraph isomorphism problem.
In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, GECCO ’14,
pages 445–452, New York, NY, USA, 2014. ACM.

[2] Q. Wu, Y. Wang, and Z. Lü. A tabu search based
hybrid evolutionary algorithm for the max-cut problem.
Appl. Soft Comput., 34(C):827–837, Sept. 2015.

50




