
Efficient Stochastic Local Search for Modularity
Maximization

Rafael Santiago
Universidade do Vale do Itajaí

Itajaí, Brazil
rsantiago@univali.br

Luís C. Lamb
Federal University of Rio Grande do Sul

Porto Alegre, Brazil
lamb@inf.ufrgs.br

ABSTRACT
In this paper, we analyze stochastic local searches and neighbor-
hood strategies for the Modularity Maximization problem. Mod-
ularity Maximization was shown relevant in the identification of
clusters in complex and social networks. Our experimental analy-
sis shows that 1-neighborhood is a better strategy for the problem
as it quickly locates suboptimal partitions. We find 99% near best-
known partitions with 94% of frequency in time |V |1.44 and 95%
near best known Q values in sublinear time.

Keywords
Clustering, Modularity Maximization, Stochastic Local Search

1. INTRODUCTION
Modularity Maximization is a graph clustering problem defined

in [3], where an objective function measures the difference between
the internal edges of each cluster and the expected number of con-
nections. The expected number of connections is the probability of
nodes of the same cluster to be connected with an edge.

For a given graph G = (V,E), where V is the set of nodes, E
is the set of edges, di is the degree of node i ∈ V , Equation 1
describes the value of the objective function of Modularity Maxi-
mization for a partition s, where aij is 1 when nodes i and j are
connected by an edge, and 0 otherwise. The partition s is a set of
disjoint clusters.

Q(s) =
1

2|E|
∑
c∈s

∑
i,j∈c

(
aij −

didj
2|E|

)
(1)

The aim of this paper is to show that how neighborhood strategy
can be used to improve solutions generated by Modularity Max-
imization heuristics. We identified which combination between
Stochastic Local Search (SLS) and neighborhood strategy groups
is better for Modularity Maximization. In doing so, we experimen-
tally show that Tabu search using the 1-neighborhood strategy finds
better partitions than the combinations among Randomized Itera-
tive Improvement, Simmulated Annealing, and Tabu search meth-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2909003

ods, when using the merge, split, and merge+split neighborhood
strategies.

2. STOCHASTIC LOCAL SEARCHES
SLS are local searches that have some random behavior such

that each execution performs an exploration in a different area of
the search space. They use an initial solution to improve it over
successive iterations. At each iteration, a solution with a small
modification (determined by a neighborhood strategy) is selected
by priority criteria.

In this paper, we described results for three SLS and four neigh-
borhood strategies for Modularity Maximization, where a solution
is a partition of disjoint clusters. The first SLS reported is the
Randomized Iterative Improvement (RII), which selects a random
neighbor solution with probability α and the best neighbor with
1 − α [1]. The second SLS is the Simulated Annealing (SA), in
which a random neighborhood s′ from the current solution s is se-
lected at each iteration, and replaces s if s′ is better than s; other-

wise, s′ replaces swith probability e−
∆(s,s′)

kT , where k is the Boltz-
mann constant (frequently k = 1) and T is the temperature. The
heuristic starts with a high temperature that is decreased at each it-
eration. In the first iterations, a random walk is performed, and only
the best solutions are selected to replace s at the last iteration [2].
Finally, our last SLS is Tabu Search (TS) which has a short memory
structure: the feature f of the selected solution s′ is inserted into a
tabu list for a particular time window at each iteration.

In our experiments, we use the following neighborhood strate-
gies: 1-neighborhood: given a partition s, s′ is a neighbor of s if
and only if, there are clustersC′ andC′′ in s, where, if we change a
node from C′ to C′′ then s = s′. In our experiments, the change of
a node to another cluster C′′ occurs if, and only if, this node has an
edge to another node in C′′; Merge: s′ is neighbor of s if, and only,
all its clusters are the same, except for cluster C ∈ s′ and both C′

and C′′ ∈ s, where C′ ∪ C′′ = C; and Split: s′ is neighbor of s
if, and only if, there is a cluster C in s that is split by half in s′;
Merge+split: all neighbors are defined as in strategies merge and
split.

3. RESULTS AND CONCLUSIONS
The experiments used an Intel Core i3 64 bits with 3.10GHz with

3072KB of cache memory and 4GB of RAM over Linux Ubuntu
12.04.3 LTS operating system. The language used was Python,
with “Pypy” processor.

Figures 1 (a), (b), and (c) show the Q value results of algorithms
RII, TS and SA, respectively. In each figure, we show the aver-
age approximation to the best known Q value by parameter and
neighborhood. Each vertical bar represents the average over all

51

Table 1: Parameter setting analysis for near best solutions. Number of visited partitions needed, frequency of achievement, and time
complexity to reach approximation of 90%, 95%, 99% of the best known modularity value. C1=(RII, 1-neighborhood, 0.5), C2=(RII,
merge, 0.1), C3=(RII ,merge+split, 0.1); C4=(SA, 1-neighborhood, 0.99), C5=(TS, 1-neighborhood, R), and C6=(TS, merge+split, 2.0).

#visited solutions %frequency k for |V |k
Ci* 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

C1 122.2±9.4 224.1±23.4 1064.5±320.7 100.0 100.0 79.3 1.03±0.63 1.29±0.51 2.41±0.94
C2 100.0±0.0 100.0±0.0 none 95.3 54.0 0.0 1.79±1.88 5.35±9.25 none
C3 108.7±16.9 none none 42.7 0.0 0.0 0.58±0.53 none none
C4 2368.5±126.7 3435.3±551.6 4419.3±1424.1 99.3 90.7 16.0 0.1±0.3 0.18±0.31 0.54±0.59
C5 100.0±0.0 100.0±0.0 492.4±138.6 100.0 100.0 94.7 1.29±0.22 1.29±0.22 1.44±0.77
C6 166.7±268.8 none none 44.7 0.0 0.0 none none none

one merge split merge+split
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
p
p
ro
xi
m
at
io
n

0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

one merge+split
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
p
p
ro
xi
m
a
ti
o
n

R
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9
1.0
2.0

one merge split merge+split
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
p
p
ro
xi
m
a
ti
o
n

0.99

(a) (b) (c)

Figure 1: Average approximation obtained by tested neighborhoods and parameters of the RII (a), TS (b), and SA (c) search.

best results from classical instances for 30 trials for a specific SLS,
neighborhood, and parameter.

The results are executed for 10, 000 iterations for RII and TS,
and SA started with the temperature equal to 10, 000. The most fre-
quent, highestQ values were achieved by TS, with 1-neighborhood
and α = R (random parameter between 0.1 and 0.9).

Table 1 describes the best parameters for the best combinations
of SLS heuristics and neighborhood strategies (in column Ci*).
The results of RII with split, SA with merge, split and merge+split
are omitted because no run achieved the approximation. The col-
umn “#visited partitions” shows the average number of partitions
visited in each combination to achieve a near best known Q value.
The “%frequency” reports the percentage that achieved an approx-
imate partition over all tests. The column “k for |V |k” shows
the constant exponent over the polynomial hypothesis and the er-
ror. Thus, to achieve a result close to the best-known solution
for TS using 1-neighborhood the empirical complexity is approx-
imate |V |1.44 operations with error ±0.77. The empirical com-
plexity is calculated using polynomial hypothesis in linear regres-
sion log(time) ∼ log(|V |) with the R statistical computing system
(http://www.r-project.org/).

In our experiments, finding partitions with 0.99 evaluation func-
tion near the best-known partition was possible with 1-neighborhood.
TS with 1-neighborhood strategy resulted in the most frequent near
best solutions: for ∼ 94% of samples, using a number of opera-
tions ∼ |V |1.44. The number of visited partitions increases to find
the best-known partitions. TS also obtained the smallest number of
visits. We can note that to find partitions, at least, 90% near to best
known, the 1-neighborhood is the best choice over all other tested
neighborhoods.

Acknowledgement
This work is partly supported by the Brazilian Research Council
CNPq and the Universidade do Vale do Itajaí.

4. REFERENCES
[1] H. Hoos and T. Stützle. Stochastic Local Search: foundations

and applications. Morgan Kaufmann, 2004.
[2] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi. Optimality

conditions and exact neighborhoods for sequencing problems.
Science, 220(4598):671–680, 1983.

[3] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical Review E,
69(2):026113, Feb. 2004.

52

