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Know your Landscape! And Go Downhill!
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Know your Landscape! And Go Downhill!
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What if you could ...

“Tunnel” between local optima on a TSP,
or on an NK Landscape or a MAXSAT problem.

Tunneling = jump from local optimum to local optimum
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What if you could ...

P1
P2

recombine P1 and P2

“Tunnel” between local optima on a TSP,
or on an NK Landscape or a MAXSAT problem

AND go the BEST reachable local optima!

Tunneling = jump from local optimum to local optimum
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The Partition Crossover Theorem for TSP

Let G be a graph produced by unioning 2 Hamiltonian Circuits.

Let G’ be a reduced graph so that all common subtours are replaced by a
single surrogate common edge.

If there is a partition of G’ with cost 2, then the 2 Hamiltonian Circuits
that make up G can be cut and recombined at this partition to create
two new offspring.

The resulting Partition Crossover is Respectful and Transmits alleles.

(Using G’ makes the proof easier, but is not necessary.)
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As a side effect: f(P1) + f(P2) = f(C1) + f(C2)
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With Thanks to Gabriela Ochoa and Renato Tinós
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Partition Crossover
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Partition Crossover
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Partition Crossover in O(N) time
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The Big Valley Hypothesis

is sometimes used to explain metaheuristic search
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Tunneling Between Local Optima

Local Optima are “Linked” by Partition Crossover
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Iterated Partition Crossover
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Iterated Partition Crossover

Offspring 2 

Offspring 1 

Offspring 0 (Parents)

Tour Evaluations

D
is

ta
n

ce
 t

o
 G

lo
b

al

518



17

Generalized Partition Crossover
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Generalized Partition Crossover

Generalize Partition Crossover is always feasible if the partitions have 2
exits (same color in and out). If a partition has more than 2 exits, the
“colors” must match.

This will automatically happen if all of the partitions have cut two.

19

Generalized Partition Crossover with Splitting

20

How Many Partitions are Discovered?

Instance att532 nrw1379 rand1500 u1817
2-opt 3.3± 0.2 3.2± 0.2 3.7± 0.3 5.0± 0.3
3-opt 10.5± 0.5 11.3± 0.5 24.9± 0.2 26.2± 0.7

LK-search 5.3± 0.2 5.2± 0.3 10.6± 0.3 13.3± 0.4

Table: Average number of partition components used by GPX in 50
recombinations of random local optima found by 2-opt, 3-opt and LK-search.

With 25 components, 225 represents millions of local optima.
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Lin-Kernighan-Helsgaun-LKH

LKH is widely considered the best Local Search algorithm for TSP.

LKH uses deep k-opt moves, clever data structures and a fast
implementation.

LKH-2 has found the majority of best known solutions on the TSP
benchmarks at the Georgia Tech TSP repository that were not solved by
complete solvers: http://www.tsp.gatech.edu/data/index.html.

THE BEST HEURISTIC TSP SOLVERS USE CROSSOVER!

LKH uses“Iterated Partial Transcription”
which is almost the same as GPX but less efficient.
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Iterative Partial Transcription and GPX

Instance C10k.0 C10k.1 C31k.0 C31k.1
LKH-2 no crossover 1.143 1.009 1.489 1.538

LKH-2 w IPT 1.040 0.873 1.280 1.274
LKH-2 w GPX 1.031 0.872 1.270 1.267

The minimum percentage above the Held-Karp Bound for several
clustered instances of the TSP of solutions found by ten random restarts
of LKH-2 without crossover, with IPT and with GPX. Best values for
each instance are in boldface. Sizes range from 10,000 to 31,000 cities.

23

GPX Across Runs and Restarts

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

B1 B2 B3 B4 B5 B6 B7 B8 B9B0

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

D0 D1 D2 D3 D4 D5 D6 D7 D8
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A diagram depicting 10 runs of multi-trial LKH-2 run for 5 iterations per
run. The circles represent local optima produced by LKH-2. GPX across
runs crosses over solutions with the same letters. GPX across restarts
crosses over solutions with the same numbers.
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GPX on Clustered Problems
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GPX, Cuts Crossing 4 Edges (IPT fails here)
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GPX, Complex Cuts

a

b

c

d

e

f

g
h

i

j

k
l

m

n

o

p

q

r

s

t

u

v
w

x

y

z

27

GPX, Complex Cuts
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NK-Landscapes and MAX-kSAT

For example: A Random NK Landscape: n = 10 and k = 3.
The subfunctions:

f0(x0, x1, x6) f1(x1, x4, x8) f2(x2, x3, x5) f3(x3, x2, x6)
f4(x4, x2, x1) f5(x5, x7, x4) f6(x6, x8, x1) f7(x7, x3, x5)

f8(x8, x7, x3) f9(x9, x7, x8)

But this could also be a MAXSAT Function,
or an arbitrary Spin Glass problem.
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A General Result over Bit Representations

By Constructive Proof: Every problem with a bit representation and a
closed form evaluation function can be expressed as a quadratic (k=2)
pseudo-Boolean Optimization problem. (See Boros and Hammer)

xy = z iff xy − 2xz − 2yz + 3z = 0

xy 6= z iff xy − 2xz − 2yz + 3z > 0

Or we can reduce to k=3 instead:

f(x1, x2, x3, x4, x5, x6)

becomes (depending on the nonlinearity):

f1(z1, z2, z3) + f2(z1, x1, x2) + f3(z2, x3, x4) + f4(z3, x5, x6)

30

GRAY BOX OPTIMIZATION

We can construct “Gray Box” optimization for pseudo-Boolean
optimization problems composed of M subfunctions, where each
subfunction accepts at most k variables.

Exploit the general properties of every Mk Landscape:

f(x) =
m∑

i=1

fi(x)

Which can be expressed as a Walsh Polynomial

W (f(x)) =
m∑

i=1

W (fi(x))

Or can be expressed as a sum of k Elementary Landscapes

f(x) =
k∑

i=1

ϕ(k)(W (f(x)))

31

GRAY BOX OPTIMIZATION

Don’t wear a blind fold when crossing a busy street!

But keep the methods as general as possible.

Many methods are not really ”Black Box.”

For example ”Parameterized Complexity”
depends on knowledge of the problem structure.
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The Variable Interaction Graph

2

3

4

5

67

8

9
0

1

The Variable Interaction Graph

There is a vertex for each variable in the Variable Interaction Graph
(VIG). There must be fewer than 2k M = O(N) Walsh coefficients.
There is a connection in the VIG between vertex vi and vj if there is a
non-zero Walsh coefficient indexed by i and j, e.g., wi,j .
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The Recombination Graph: a reduced VIG
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The decomposed Recombination Graph

When recombining the solutions 0000000000 and 1100011101, the
vertices and edges associated with shared variables 2, 3, 4, 8 are deleted
to yield the recombination graph.

If the recombination graph of f contains q connected components,
then Partition Crossover returns the best of 2q solutions.
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Decomposed Evaluation

2

3

4

5

67

8

9
0

1

The Variable Interaction Graph
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The decomposed Recombination Graph

A new evaluation function can be constructed:

g(x) = c+ g1(x5, x7, x9) + g2(x0, x1, x6)

where g(x) can be used to evaluate any solution (parents or offspring)
that resides in the subspace **000***0*.

35

Partition Crossover and Local Optima

The Subspace Optimality Theorem: For any k-bounded
pseudo-Boolean function f , if Parition Crossover is used to recombine
two parent solutions that are locally optimal, then the offspring must be
a local optima in the hyperplane subspace defined by the bits shared in
common by the two parents.

Example: if the parents 0000000000 and 1100011101
are locally optimal, then the best offspring

is locally optimal in the hyperplane subspace **000***0*.
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Partition Crossover and Local Optima

Corolllary: The only possible improving move for offspring generated
from parents that are locally optimal must flip a bit that the parents
shared in common.

Illustration:

g(x) = c+ g1(x5, x7, x9) + g2(x0, x1, x6)

If the parents were locally optimal, every subfunction gi is locally optimal
and offspring cannot be improved by a bit flip.

The only improving moves are on shared bits: **000***0*.
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NK-Landscapes

An Adjacent NK Landscape: n = 6 and k = 3. The subfunctions:

f0(x0, x1, x2)
f1(x1, x2, x3)

f2(x2, x3, x4)
f3(x3, x4, x5)

f4(x4, x5, x0)
f5(x5, x0, x1)

These problems can be solved to optimality using Dynamic Programming.
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Percent of Offspring that are Local Optima

Using a Very Simple (Stupid) Hybrid GA:

N k Model 2-point Xover Uniform Xover PX
100 2 Adj 74.2 ±3.9 0.3 ±0.3 100.0 ±0.0
300 4 Adj 30.7 ±2.8 0.0 ±0.0 94.4 ±4.3
500 2 Adj 78.0 ±2.3 0.0 ±0.0 97.9 ±5.0
500 4 Adj 31.0 ±2.5 0.0 ±0.0 93.8 ±4.0

100 2 Rand 0.8 ±0.9 0.5 ±0.5 100.0 ±0.0
300 4 Rand 0.0 ±0.0 0.0 ±0.0 86.4 ±17.1
500 2 Rand 0.0 ±0.0 0.0 ±0.0 98.3 ±4.9
500 4 Rand 0.0 ±0.0 0.0 ±0.0 83.6 ±16.8
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Number of partition components discovered

N k Model Paired PX
Mean Max

100 2 Adjacent 3.34 ±0.16 16
300 4 Adjacent 5.24 ±0.10 26
500 2 Adjacent 7.66 ±0.47 55
500 4 Adjacent 7.52 ±0.16 41

100 2 Random 3.22 ±0.16 15
300 4 Random 2.41 ±0.04 13
500 2 Random 6.98 ±0.47 47
500 4 Random 2.46 ±0.05 13

Paired PX uses Tournament Selection. The first parent is selected by
fitness. The second parent is selected by Hamming Distance.
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Optimal Solutions for Adjacent NK

2-point Uniform Paired PX
N k Found Found Found

300 2 18 0 100
300 3 0 0 100
300 4 0 0 98
500 2 0 0 100
500 3 0 0 98
500 4 0 0 70

Percentage over 50 runs where the global optimum was Found in the
experiments of the hybrid GA with the Adjacent NK Landscape.
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But a Hybrid Genetic Algorithm is NOT how we should solve these
NK Landscape Problems.

We can exactly know the location of improving moves in constant time.
No enumeration of neighbors is needed.

Under well behaved conditions,
we can exactly know the location of improving moves
for r steps ahead in constant time.

42

Walsh Analysis

Every n-bit MAXSAT or NK-landscape or P-spin problem is a sum of m
subfunctions, fi:

f(x) =
m∑

i=1

fi(x)

The Walsh transform of f is a sum of the Walsh transforms of the
individual subfunctions.

W (f(x)) =
m∑

i=1

W (fi(x))

If m is O(n) then the number of Walsh coefficients is m 2k = O(n).
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“Mk Landscapes” (GECCO paper on Monday)

A General Model for all bounded Pseudo-Boolean Problems
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f1  f2 f3 f f4 m

f

i = 1

i
(x, mask)f(x) = 

m
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When 1 bit flips what happens?

1  0  1  0  1  1  1  0  0  1  1  0  0  1  0  1  0  1  0  0  1  0  1  1  1  0  0  1

f1  f2 f3 f f4 m

f
i = 1

if(x) = 

m

(x, mask )i

flip
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Constant Time Steepest Descent

Assume we flip bit p to move from x to yp ∈ N(x).
Construct a vector Score such that

Score(x, yp) = −2




∑

∀b, p⊂b

−1b
T xwb(x)





In this way, all of the Walsh coefficients whose signs will be changed by
flipping bit p are collected into a single number Score(x, yp).

The GSAT algorithm has done this for 23 years (Thanks to H. Hoos).

NOTE: Hoos and Stützle have claimed a constant time result, but
without proof. An average case complexity proof is required to obtain
general constant time complexity results (Whitley 2013, AAAI). Also it
does not matter if the problems are uniform random or not.

46

Best Improving and Next Improving moves

“Best Improving” and “Next Improving” moves cost the same.

GSAT uses a Buffer of best improving moves

Buffer(best.improvement) =< M10,M1919,M9999 >

But the Buffer does not empty monotonically: this leads to thrashing.

Instead uses multiple Buckets to hold improving moves

Bucket(best.improvement) =< M10,M1919,M9999 >

Bucket(best.improvement− 1) =< M8371,M4321,M847 >

Bucket(all.other.improving.moves) =< M40,M519,M6799 >

This improves the runtime of GSAT by a factor of 20X to 30X.
The solution for NK Landscapes is only slightly more complicated.

47

The locations of the updates are obvious

Score(yp, y1) = Score(x, y1)

Score(yp, y2) = Score(x, y2)

Score(yp, y3) = Score(x, y3)− 2(
∑

∀b, (p∧3)⊂b

w′b(x))

Score(yp, y4) = Score(x, y4)

Score(yp, y5) = Score(x, y5)

Score(yp, y6) = Score(x, y6)

Score(yp, y7) = Score(x, y7)

Score(yp, y8) = Score(x, y8)− 2(
∑

∀b, (p∧8)⊂b

w′b(x))

Score(yp, y9) = Score(x, y9)

48

What if we could look R Moves Lookahead?

Consider R=3

Let Score(3, x, yi,j,k) indicate we move from x to yi,j,k by flipping the 3
bits i, j, k. In general, we compute Score(r, x, yp) when flipping r bits.

f(yi) = f(x) + Score(1, x, yi)

f(yi,j) = f(yi) + Score(1, yi, yj)

f(yi,j) = f(x) + Score(2, x, yi,j)

f(yi,j,k) = f(yi,j) + Score(1, yi,j , yk)

f(yi,j,k) = f(x) + Score(3, x, yi,j,k)

With thanks to Francisco Chicano!
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Why Doesn’t this exponentially EXPLODE???

f(yi,j,k) = ((f(x) + Score(1, x, yi)) + Score(1, yi, yj)) + Score(1, yi,j , yk)

Score(3, x, yi,j,k) = Score(2, x, yi,j) + Score(1, yi,j , yi,j,k)

If there is no Walsh Coefficient wi,j then Score(1, yi, yi,j) = 0.

Assume we have already moves of length shorter than 3.
If there are no Walsh Coefficients “linking” i, j, k then
Score(3, x, yi,j,k) = 0.

50

The Variable Interaction Graph
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The Variable Interaction Graph

Assume all distance 1 moves are taken.

There cannot be a move flipping bits 4, 6, 9 that yields an improving
move because there are no interactions and no Walsh coefficients.
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Multiple Step Lookahead Local Search
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In this figure, N = 12,000, k=3, and q=4. The radius is 1, 2, 3, 4, 5, 6.
At r=6 the global optimum is found.
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What’s (Obviously) Next?

Local Search with r Move Lookahead PLUS Partition Crossover.

Apply r Move Lookahead and Partition Crossover to MAX-kSAT.

Use Deterministic Improving Moves.

Use Deterministic Recombination.
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What’s (Obviously) Next?

Put an End to the domination of Black Box Optimization.

Wait for Tonight and Try to Take over the World.

54

Introduction to Elementary Landscapes

What is a landscape?

Many different intuitive definitions

A mathematical formalism of the search space of a combinatorial
optimization problem

Definition: a landscape is a tuple (X,N, f)

A set of states X
A neighborhood operator N : X 7→ P(X)
A fitness function f : X 7→ R

55

Introduction: a landscape

53

56 48

42

44

1,2,3,4,5,6 1,4,3,2,5,6

1,2,5,4,3,6 1,4,5,2,3,6

1,4,5,6,3,2

X set of states
N : X 7→ P(X) neighborhood operator

f : X 7→ R objective function

56

Preliminaries

G(X,E)

is the underlying graph induced by N.
We assume G is regular with vertices of degree d.

A ∈ R|X|×|X|

is the adjacency matrix of G.
If x1 and x2 are neighbors, A(x1, x2) = 1.

∆ = A− dI

is the Laplacian of G.
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The Wave Equation: definition 1

On an arbitrary landscape

f and N are unrelated

On an elementary landscape

The wave equation

∆f = λf

where λ is a scalar

In other words, f is an eigenvector of the Laplacian

58

The Wave Equation: definition 1

Average change

∆f = (A− dI)f = k(f̄ − f)

∆f(x) =
∑

y∈N(x)

(f(y)− f(x)) = k(f̄ − f(x))

Average value

avg
y∈N(x)

{f(y)} =
1

d

∑

y∈N(x)

f(y)

= f(x) +
1

d


 ∑

y∈N(x)

f(y)− f(x)




= f(x) +
1

d
∆f(x)

= f(x) +
k

d

(
f̄ − f(x)

)
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The Wave Equation: definition 2

f(x) =
∑

a subset of “components”

Starting from average...

avg
y∈N(x)

{f(y)} = f(x) + avg
y∈N(x)

{components in− components out}

60

Example: TSP under 2-opt

f(x)

∑
wi − f(x)

f(y) = f(x)− out+ in

Components: set of edge weights wi,j

f(x) = sum of edge weights induced by tour x

There are n(n− 1)/2− n weights not in tour x

Average value of components out: 2
nf(x)

Average value of components in: 2
n(n−3)/2 (

∑
w − f(x))
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The Components and f̄

Let C denote the set of components

0 < p3 < 1 is the proportion of the components in C that contribute to
the cost function for any randomly chosen solution

f̄ = p3
∑

c∈C
c

For the TSP:

f̄ =
n

n(n− 1)/2

∑

wi,j∈C
wi,j

f̄ =
2

n− 1

∑

wi,j∈C
wi,j
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The Wave Equation: definition 2

avg
y∈N(x)

{f(y)} = f(x) +
2

n(n− 3)/2

(∑
w − f(x)

)
− 2

n
f(x)

= f(x) +
2

n(n− 3)/2

(
(n− 1)/2f̄ − f(x)

)
− 2

n
f(x)

= f(x) +
(n− 1)

n(n− 3)/2
(f̄ − f(x))

= f(x) +
k

d
(f̄ − f(x))
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For a 5 city TSP

ab bc cd de ae ac ad bd be ce
ABCDE 1 1 1 1 1 0 0 0 0 0
ABEDC 1 0 1 1 0 1 0 0 1 0
ABCED 1 1 0 1 0 0 1 0 0 1
ABDCE 1 0 1 0 1 0 0 1 0 1
ACBDE 0 1 0 1 1 1 0 1 0 0
ADCBE 0 1 1 0 1 0 1 0 1 0

64

Looking at the neighbors in aggregate.

ab bc cd de ae ac ad bd be ce
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
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Properties

local maxima

local minima

x

f(x)
f̄

66

A General Model for all bounded Pseudo-Boolean Problems

This obviously applies to MAXSAT and NK Landscapes

1  0  1  0  1  1  1  0  0  1  1  0  0  1  0  1  0  1  0  0  1  0  1  1  1  0  0  1

f1  f2 f3 f f4 m

f

i = 1

i
(x, mask)f(x) = 

m
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Superpositions of Elementary Landscapes

f(x) = f1(x) + f2(x) + f3(x) + f4(x)

f1(x) = f1a(x) + f1b(x) + f1c(x)

f2(x) = f2a(x) + f2b(x) + f2c(x)

f3(x) = f3a(x) + f3b(x) + f3c(x)

f4(x) = f4a(x) + f4b(x) + f4c(x)

ϕ(1)(x) = f1a(x) + f2a(x) + f3a(x) + f4a(x)

ϕ(2)(x) = f1b(x) + f2b(x) + f3b(x) + f4a(x)

ϕ(3)(x) = f1c(x) + f2c(x) + f3c(x) + f4a(x)

f(x) = ϕ(1)(x) + ϕ(2)(x) + ϕ(3)(x)
68

MAX-3SAT decomposition

MAX-3SAT is a superposition of 3 elementary landscapes

Walsh span of order p

ϕ(p) =
∑

{i : bc(i)=p}

wiψi

The pth Walsh span is an elementary landscape

∆ϕ(p) = −2pϕ(p)

With Thanks to Andrew Sutton!
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MAX-3SAT decomposition

Recall that we can express f as:

f(x) =

m∑

i=1

2k∑

j=1

wm(i,j)ψm(i,j)(x)

Grouping the Walsh decomposition results in

f(x) =
3∑

p=0

ϕ(p)(x)

Thus MAX-3SAT is a superposition of 3-elementary landscapes

70

This allows us to compute Statistical Summaries

We can compute statistics efficiently over Hyperplanes

We can compute statistics efficiently over Hamming Balls
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THANK YOU

Take Home Message:

PROBLEM STRUCTURE MATTERS.

Black Box Optimizers can never match the
performance of an algorithm that efficiently exploits
problem structure.

But we need only a small amount of information:
Gray Box Optimization.

For Mk Landscapes , we can use
Deterministic Moves and Deterministic Crossover.
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