
Iterated Local Search Based Heuristic for Scheduling Jobs
on Unrelated Parallel Machines with Machine Deterioration

Effect

Vívian L. Aguiar Santos
Dep. of Computer Science
U. Federal de Viçosa, Brazil
vivian.santos@ufv.br

José Elias C. Arroyo
Dep. of Computer Science
U. Federal de Viçosa, Brazil

jarroyo@dpi.ufv.br

Thales F. M. Carvalho
Dep. of Computer Science
U. Federal de Viçosa, Brazil
thales.carvalho@ufv.br

ABSTRACT
In this research, we study an unrelated parallel machine
scheduling problem in which the jobs cause deterioration
of the machines. This deterioration decreases the perfor-
mance of the machines, therefore the processing times of
the jobs are increased over time. The problem is to find
the processing sequence of jobs on each machine in order to
reduce the deterioration of the machines and consequently
minimize the makespan. Given that the problem is NP-
hard, we propose an Iterated Local Search (ILS) heuristic
to obtain near-optimal solutions. In this work we com-
bine ILS meta-heuristic with Random Variable Neighbor-
hood Descent (RVND) local search. The performance of
our heuristic is compared with the state-of-the-art meta-
heuristic algorithm proposed in the literature for the prob-
lem under study. The results show that the our heuristic
outperform the existing algorithm by a significant margin.

Keywords
Scheduling; deterioration effect; meta-heuristics.

1. INTRODUCTION
In deterministic scheduling problems, the job processing

times are generally known in advance and remain constant
during the scheduling horizon. However, there are many
practical situations in which the processing time of a job
may increase over time, such that the later a job starts, the
longer it takes to be processed. This phenomenon is known
as the job processing time deterioration effect [4].

Ruiz-Torres et al. [2] presented a job deterioration model
that considers the case where the deterioration of the pro-
cessing time for a job depends on the specific jobs that have
been previously processed by the machine. The deteriora-
tion of a machine produces deterioration (increasing) of job
processing times. These authors addressed an unrelated par-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’16 July 20-24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2909053

allel machine scheduling problem with the makespan mini-
mization.

In this paper we address the same problem formulated
by Ruiz-Torres et al. [2]. There is a set of n jobs, N =
{1, . . . , n}, to be processed on a set of m unrelated par-
allel machines, M = {1, . . . ,m}. All jobs are available
for processing at time zero and job preemption is not al-
lowed. Each machine can process at most one job at a
time and can not stand idle until the last job assigned to
it has been finished. The normal processing time of job j
on machine k is defined by pj,k and the deteriorating effect
of job j on machine k is given by dj,k, where, 0 ≤ dj,k ≤ 1,
∀j ∈ N and k ∈ M . The performance level of the machine
k to processes the job in position h (h > 1) is defined by:
qk,[h] = (1−d[h−1],k)× qk,[h−1], where, d[h−1],k is the deteri-
orating effect of job in position h−1. It is assumed that the
machines start with no deterioration, thus the performance
level to processes the job in position 1 is 100%, i.e. qk,[1] = 1
for all k ∈ M . The actual processing of a job j processed
on machine k in position h is determined by: p′j,k =

pj,k
qk,[h]

.

The objective of the problem is to sequence the jobs on the
machines in order to minimize the makespan (Cmax).

In [2] is proved that, for a subset J of jobs assigned to a
machine k, the minimum completion time of the machine is
found by sequencing the jobs in decreasing order of the ratio:
rj,k = pj,k(1 − dj,k)/dj,k,∀j ∈ J . Therefore, the objective
of the problem is to determine the subset of jobs for each
machine. The problem is NP-hard for m > 1 [2].

2. PROPOSED HEURISTIC ALGORITHM
In this work we propose a heuristic, called ILS-RVND,

which is based on ILS meta-heuristic [1] and RVND lo-
cal search [3]. The heuristic uses a dynamic perturbation,
i.e., the value of perturbation length is modified during the
search process. A general description of the pseudo-code of
the ILS-RVND heuristic is shown in Algorithm 1. In Steps
2 and 3, an initial solution is constructed and improved by
local search (LS) procedure. In Step 4, the length of the per-
turbation t is initialized with the minimum value tmin. The
main iterations of the algorithm are computed in Steps 5 to
15 until the stop criterion is satisfied. During each iteration,
the current solution S is perturbed and improved by the LS
procedure obtaining a new solution S2. If the solution S2

improves the best solution obtained so far, the perturbation
length is setted to its lowest level, t = tmin (Steps 8-9). If
the best solution is not improved, the perturbation length

53



is incremented (Step 11). The maximum value for the per-
turbation length is tmax. If the perturbation length exceeds
this limit, its value is reset to the minimum value, t = tmin

(Steps 12-13). The algorithm only accepts better solutions
(Steps 14-15).

Algorithm 1: ILS-RVND (stopC, tmin, tmax, β)

1 begin
2 S ← INITIAL SOLUTION();
3 S ← RVND LOCAL SEARCH(S);
4 t ← tmin; S

∗ ← S; //best solution
5 while not stopC do
6 S1 ← PERTURBATION(S, t);
7 S2 ← RVND LOCAL SEARCH(S1);
8 if f(S2) < f(S∗) then
9 S∗ ← S2; t ← tmin;

10 else
11 t ← t+ 1;
12 if t > tmax then
13 t ← tmin;

14 if f(S2) < f(S) then
15 S ← S2;

16 return S∗

To construct an initial solution S, all jobs j are initially
arranged in decreasing order of the following rule: raveragej =∑

k∈M rj,k
m

. Following this ordering, each job is designed to
the machine that produces the shortest completion time.
The jobs on the machines are arranged by the ratio rj,k.

The perturbation procedure is done as follows. First, a set
of t machines are randomly chosen: {M1, ...,Mt}. This set
must contain the machine with a maximum completion time
(makespan machine). Next, a job is selected at random in
each machine. The job of machine M1 is inserted in machine
M2, the job of machine M2 is inserted in machine M3 and
so on until, the job of machine Mt is inserted in machine
M1. The parameter t ∈ [tmin, tmax] defines the perturbation
length.

The RVND local search is performed by a VND heuristic
which utilizes a random neighborhood ordering, that is the
move to generate neighbor solutions is randomly selected.
Two moves are used: pairwise exchange (PI ) and single in-
sertion (SI ). The PI move consists in exchange two jobs i
and j from to two different machines Mc and Mk, respec-
tively, where Mc must to be the makespan machine. The SI
move consists in remove a job j from the makespan machine
Mc and inserting it in other machine Mk. The moves PI
and SI define the neighborhoods, N1 and N2, respectively.
Randomly a neighborhood Ni is selected from L = {N1, N2}
and the best solution SBest in this neighborhood is deter-
mined. If SBest improves the current solution, it is replaced
by SBest and the list L is reset with the two neighborhoods.
Otherwise, Ni is removed from L. The local search finishes
when L is empty.

3. RESULTS AND CONCLUSIONS
The heuristic ILS-RVND was tested on 900 medium-size

instances (n ∈ {20, 35, 50} and m ∈ {4, 7, 10}) provided
by Ruiz-Torres et al. [2], and on 900 large-size instances
(n ∈ {80, 100, 150} and m ∈ {5, 10, 20}) randomly gener-
ated. The stopping criterion (stopC ) was set at a predefined
elapsed CPU time defined by n

m
seconds. tmin was set at 2.

The following values were tested for tmax: d0.7me, d0.8me,
d0.9me, d1.0me. The best value was tmax = d0.9me.

We compare the ILS-RVD with the Simulated Anneal-
ing algorithm SA* proposed in [2]. For the medium-size
instances, the best results of SA* were made avalable by [2].
Following the original paper, we re-implemented the SA*
algorithm. We name SA*2. In SA*2 we use the same stop
condition, n/m seconds. We compare SA*2 with the original
algorithm SA* on the 900 medium-size instances. The re-
sults show that SA*2 is significantly better than SA*. Since
SA*2 and ILS-RVND use the same stop condition, in this
paper we compare the performance of these algorithms. The
algorithms were coded in C++ and all instances were solved
16 times by the algorithms. The performance of the algo-
rithms are measured by computing the Relative Percentage

Deviation (RPD) defined by: RPD =
fAverage−fBest

fBest
×100%,

where fAverage is the average makespan value (among the
16 runs) obtained by a given algorithm and fBest is the best
known makespan. Table 1 reports the average RPDs of the
algorithms, for medium and large instances. Bold values rep-
resent best RPDs. We can see that ILS-RVND produces the
best average results in all instance groups. For medium-size
instances, SA*2 and ILS-RVND present overall RPD means
of 2.3% and 0.1%, respectively. For large-size instances, the
overall RPD means of the algorithms SA*2 and ILS-RVND
are 3.2% and 1.3%, respectively. The effectiveness of ILS-
RVND was statistically validated.

Table 1: Average RPDs for the compared algorithms

n×m SA*2 ILS-RVND n×m SA*2 ILS-RVND
20×4 1.3 0.0 80×5 1.0 0.2
20× 7 3.6 0.0 80×10 3.3 1.1
20×10 3.8 0.0 80×20 5.7 2.2
35×4 0.6 0.0 100×5 1.1 0.2
35×7 2.1 0.1 100×10 3.2 1.2
35×10 4.3 0.3 100×20 5.4 2.4
50×4 0.4 0.0 150×5 1.2 0.3
50×7 1.7 0.2 150×10 3.5 1.1
50×10 3.2 0.2 150×20 4.5 2.6
Mean 2.3 0.1 Mean 3.2 1.3

It can be concluded that the proposed algorithm can be
considered the state-of-the-art method for solving the schedul-
ing problem under study, as seen through a comparison of
the obtained results with the best available meta-heuristic
on a wide range of benchmark instances.

Acknowledgments
This work was supported by CAPES, CNPq and FAPEMIG.

4. REFERENCES
[1] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated

local search. Springer, 2003.

[2] A. J. Ruiz-Torres, G. Paletta, and E. Pérez. Parallel
machine scheduling to minimize the makespan with
sequence dependent deteriorating effects. Computers &
Operations Research, 40(8):2051–2061, 2013.

[3] A. Subramanian, E. Uchoa, and L. S. Ochi. A hybrid
algorithm for a class of vehicle routing problems.
Computers & Operations Research, 40(10):2519–2531,
2013.

[4] D.-L. Yang, T. Cheng, S.-J. Yang, and C.-J. Hsu.
Unrelated parallel-machine scheduling with aging
effects and multi-maintenance activities. Computers &
Operations Research, 39(7):1458–1464, 2012.

54




