
Constraint-Handling Techniques used
with Evolutionary Algorithms

Carlos A. Coello Coello

CINVESTAV-IPN

Mexico City, México

ccoello@cs.cinvestav.mx

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org. GECCO16 Companion, July 2024,

2016, Denver, CO, USA . c© 2016 ACM. ISBN 978-1-4503-4323-3/16/07 . . . $15.00. DOI:

http://dx.doi.org/10.1145/2908961.2926986

1

Motivation

Traditional mathematical programming techniques used to solve
constrained optimization problems have several limitations when
dealing with the general nonlinear programming problem:

Min f(�x) (1)

subject to:

gi(�x) ≤ 0, i = 1, . . . , m (2)

hj(�x) = 0, j = 1, . . . , p (3)

where �x is the vector of decision variables �x = [x1, x2, . . . , xn]T , m

is the number of inequality constraints and p is the number of
equality constraints (in both cases, constraints can be either linear
or nonlinear).

2

Motivation

Evolutionary Algorithms (EAs) have been found successful in the
solution of a wide variety of optimization problems. However, EAs
are unconstrained search techniques. Thus, incorporating
constraints into the fitness function of an EA is an open research
area.

There is a considerable amount of research regarding mechanisms
that allow EAs to deal with equality and inequality constraints;
both type of constraints can be linear or nonlinear. Such work is
precisely the scope of this tutorial.

3

Search Space

F

F
F

S

4563

A Taxonomy of Constraint-Handling Approaches

• Penalty Functions

• Special representations and operators

• Repair algorithms

• Separation of constraints and objectives

• Hybrid Methods

5

Penalty Functions

The most common approach in the EA community to handle constraints

(particularly, inequality constraints) is to use penalties. Penalty

functions were originally proposed by Richard Courant in the 1940s and

were later expanded by Carroll and Fiacco & McCormick.

6

Penalty Functions

The idea of penalty functions is to transform a constrained
optimization problem into an uncontrained one by adding (or
subtracting) a certain value to/from the objective function based
on the amount of constraint violation present in a certain solution.

7

Penalty Functions

In mathematical programming, two kinds of penalty functions are
considered: exterior and interior. In the case of exterior methods,
we start with an infeasible solution and from there we move
towards the feasible region.

8564

Penalty Functions

In the case of interior methods, the penalty term is chosen such
that its value will be small at points away from the constraint
boundaries and will tend to infinity as the constraint boundaries
are approached. Then, if we start from a feasible point, the
subsequent points generated will always lie within the feasible
region since the constraint boundaries act as barriers during the
optimization process.

9

Penalty Functions

EAs normally adopt external penalty functions of the form:

φ(�x) = f(�x) ±
⎡
⎣

n∑
i=1

ri × Gi +
p∑

j=1

cj × Lj

⎤
⎦ (4)

where φ(�x) is the new (expanded) objective function to be
optimized, Gi and Lj are functions of the constraints gi(�x) and
hj(�x), respectively, and ri and cj are positive constants normally
called “penalty factors”.

10

Penalty Functions

The most common form of Gi and Lj is:

Gi = max[0, gi(�x)]β (5)

Lj = |hj(�x)|γ (6)

where β and γ are normally 1 or 2.

11

Penalty Functions

Penalty functions can deal both with equality and inequality
constraints, and the normal approach is to transform an equality to
an inequality of the form:

|hj(�x)| − ε ≤ 0 (7)

where ε is the tolerance allowed (a very small value).

12565

Types of Penalty Functions used with EAs

• Death Penalty

• Static Penalty

• Dynamic Penalty

• Adaptive Penalty

• Other Approaches

– Self-Adaptive Fitness Formulation

– ASCHEA

– Stochastic Ranking

13

Death Penalty

The rejection of infeasible individuals (also called “death penalty”)
is probably the easiest way to handle constraints and it is also
computationally efficient, because when a certain solution violates
a constraint, it is rejected and generated again. Thus, no further
calculations are necessary to estimate the degree of infeasibility of
such a solution.

14

Criticism to Death Penalty

• Not advisable, except in the case of problems in which the
feasible region is fairly large.

• No use of information from infeasible points.

• Search may “stagnate” in the presence of very small feasible
regions.

• A variation that assigns a zero fitness to infeasible solutions
may work better in practice.

15

Static Penalty

Under this category, we consider approaches in which the penalty
factors do not depend on the current generation number in any
way, and therefore, remain constant during the entire evolutionary
process.

16566

Static Penalty

An example of this sort of approach is the following:

• The approach proposed by Homaifar, Lai and Qi [1994] in which

they define levels of violation of the constraints (and penalty factors

associated to them):

fitness(�x) = f(�x) +
m∑

i=1

(
Rk,i × max [0, gi(�x)]2

)
(8)

where Rk,i are the penalty coefficients used, m is total the number

of constraints, f(�x) is the unpenalized objective function, and

k = 1, 2, . . . , l, where l is the number of levels of violation defined by

the user.

17

Criticism to Static Penalty

• It may not be a good idea to keep the same penalty factors
along the entire evolutionary process.

• Penalty factors are, in general, problem-dependent.

• Approach is simple, although in some cases (e.g., in the
approach by Homaifar, Lai and Qi [1994]), the user may need
to set up a high number of penalty factors.

18

Dynamic Penalty

Within this category, we will consider any penalty function in
which the current generation number is involved in the
computation of the corresponding penalty factors (normally the
penalty factors are defined in such a way that they increase over
time—i.e., generations).

19

Dynamic Penalty

An example of this sort of approach is the following:

• The approach from Joines and Houck [1994] in which individuals are

evaluated (at generation t) using:

fitness(�x) = f(�x) + (C × t)α × SV C(β, �x) (9)

where C, α and β are constants defined by the user (the authors

used C = 0.5, α = 1 or 2, and β = 1 or 2).

20567

Dynamic Penalty

SV C(β, �x) is defined as:

SV C(β, �x) =
n∑

i=1

Dβ
i (�x) +

p∑
j=1

Dj(�x) (10)

and

Di(�x) =

⎧⎨
⎩

0 gi(�x) ≤ 0

|gi(�x)| otherwise
1 ≤ i ≤ n (11)

Dj(�x) =

⎧⎨
⎩

0 −ε ≤ hj(�x) ≤ ε

|hj(�x)| otherwise
1 ≤ j ≤ p (12)

This dynamic function increases the penalty as we progress through

generations.

21

Criticism to Dynamic Penalty

• Some researchers have argued that dynamic penalties work
better than static penalties.

• In fact, many EC researchers consider dynamic penalty as a
good choice when dealing with an arbitrary constrained
optimization problem.

• Note however, that it is difficult to derive good dynamic
penalty functions in practice as it is difficult to produce good
penalty factors for static functions.

22

Adaptive Penalty

Bean and Hadj-Alouane [1992,1997] developed a method that uses
a penalty function which takes a feedback from the search process.
Each individual is evaluated by the formula:

fitness(�x) = f(�x) + λ(t)

⎡
⎣

n∑
i=1

g2
i (�x) +

p∑
j=1

|hj(�x)|
⎤
⎦ (13)

where λ(t) is updated at every generation t.

23

Adaptive Penalty

λ(t) is updated in the following way:

λ(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

(1/β1) · λ(t), if case #1

β2 · λ(t), if case #2

λ(t), otherwise,

(14)

where cases #1 and #2 denote situations where the best individual in

the last k generations was always (case #1) or was never (case #2)

feasible, β1, β2 > 1, β1 > β2, and β1 �= β2 (to avoid cycling).

24568

Adaptive Penalty

In other words, the penalty component λ(t + 1) for the generation
t + 1 is decreased if all the best individuals in the last k generations
were feasible or is increased if they were all infeasible. If there are
some feasible and infeasible individuals tied as best in the
population, then the penalty does not change.

25

Criticism to Adaptive Penalty

• Setting the parameters of this type of approach may be difficult
(e.g., what generational gap (k) is appropriate?).

• This sort of approach regulates in a more “intelligent” way the
penalty factors.

• An interesting aspect of this approach is that it tries to avoid
having either an all-feasible or an all-infeasible population.
Other constraint-handling approaches pay a lot of attention to
this issue.

26

Penalty Functions: Central Issues

The main problem with penalty functions is that the “ideal”
penalty factor to be adopted in a penalty function cannot be
known a priori for an arbitrary problem. If the penalty adopted is
too high or too low, then there can be problems.

27

Penalty Functions: Central Issues

If the penalty is too high and the optimum lies at the boundary of
the feasible region, the EA will be pushed inside the feasible region
very quickly, and will not be able to move back towards the
boundary with the infeasible region. On the other hand, if the
penalty is too low, a lot of the search time will be spent exploring
the infeasible region because the penalty will be negligible with
respect to the objective function.

28569

Other Approaches

Three modern constraint-handling approaches that use penalty
functions deserve special consideration, since they are highly
competitive:

• Self-Adaptive Fitness Formulation

• ASCHEA

• Stochastic Ranking

• The α Constrained Method

29

Self-Adaptive Fitness Formulation

• Proposed by Farmani and Wright [2003].

• The approach uses an adaptive penalty that is applied in 3 steps:

1. The sum of constraint violation is computed for each individual.

2. The best and worst solutions are identified in the current population.

3. A penalty is applied in two parts:

– It is applied only if one or more feasible solutions have a better

objective function value than the best solution found so far. The

idea is to increase the fitness of the infeasible solutions.

– Increase the fitness of the infeasible solutions as to favor those

solutions which are nearly feasible and also have a good objective

function value.

30

Self-Adaptive Fitness Formulation

• The penalty factor is defined in terms of both the best and the
worst solutions.

• The authors use a genetic algorithm with binary representation
(with Gray codes) and roulette-wheel selection.

• Good results, but not better than the state-of-the-art
techniques (e.g., Stochastic Ranking).

31

Self-Adaptive Fitness Formulation

• The number of fitness function evaluations required by the
approach is high (1, 400, 000).

• Its main selling point is that the approach does not require of
any extra user-defined parameters. Also, the implementation
seems relatively simple.

• Other self-adaptive penalty functions have also been proposed
(see for example [Tessema & Yen, 2006]).

32570

ASCHEA

The Adaptive Segregational Constraint Handling Evolutionary
Algorithm (ASCHEA) was proposed by Hamida and Schoenauer
[2000]. It uses an evolution strategy and it is based on three main
components:

• An adaptive penalty function.

• A recombination guided by the constraints.

• A so-called “segregational” selection operator.

33

ASCHEA

The adaptive penalty adopted is the following:

fitness(�x) =

⎧⎨
⎩

f(�x) if the solution is feasible

f(�x) − penal(�x) otherwise
(15)

where

penal(�x) = α

q∑
j=1

g+
j (�x) + α

m∑
j=q+1

|hj(�x)| (16)

where g+
j (�x) is the positive part of gj(�x) and α is the penalty factor adopted

for all the constraints.

34

ASCHEA

The penalty factor is adapted based on the desired ratio of feasible solutions

(with respect to the entire population) τtarget and the current ratio at

generation t τt:

if(τt > τtarget) α(t + 1) = α(t)/fact

else α(t + 1) = α(t) ∗ fact

where fact > 1 and τtarget are user-defined parameters and

α(0) =

∣∣∣∣
∑n

i=1 fi(�x)∑n
i=1 Vi(�x)

∣∣∣∣ ∗ 1000 (17)

where Vi(�x) is the sum of the constraint violation of individual i.

35

ASCHEA

The Recombination guided by the constraints combines an
infeasible solution with a feasible one when there are few feasible
solutions, based on τtarget. If τt > τtarget, then the recombination is
performed in the traditional way (i.e., disregarding feasibility).

The Segregational Selection operator aims to define a ratio
τselect of feasible solutions such that they become part of the next
generation. The remaining individuals are selected in the
traditional way based on their penalized fitness. τselect is another
user-defined parameter.

36571

ASCHEA

• In its most recent version [2002], it uses a penalty factor for
each constraint, as to allow more accurate penalties.

• This version also uses niching to maintain diversity (this,
however, adds more user-defined parameters).

• The approach requires a high number of fitness function
evaluations (1, 500, 000).

37

Stochastic Ranking

This approach was proposed by Runarsson and Yao [2000], and it
consists of a multimembered evolution strategy that uses a penalty
function and a selection based on a ranking process. The idea of
the approach is try to balance the influence of the objective
function and the penalty function when assigning fitness to an
individual. An interesting aspect of the approach is that it doesn’t
require the definition of a penalty factor. Instead, the approach
requires a user-defined parameter called Pf , which determines the
balance between the objective function and the penalty function.

38

Stochastic Ranking

Begin

For i=1 to N

For j=1 to P-1

u=random(0,1)

If (φ(Ij) = φ(Ij+1) = 0) or (u < Pf)

If (f(Ij) > f(Ij+1))

swap(Ij ,Ij+1)

Else

If (φ(Ij) > φ(Ij+1))

swap(Ij ,Ij+1)

End For

If no swap is performed

break

End For

End

39

Stochastic Ranking

The population is sorted using an algorithm similar to bubble-sort
(which sorts a list based on pairwise comparisons). Based on the
value of Pf , the comparison of two adjacent individuals is
performed based only on the objective function. The remainder of
the comparisons take place based on the sum of constraint
violation. Thus, Pf introduces the “stochastic” component to the
ranking process, so that some solutions may get a good rank even if
they are infeasible.

40572

Stochastic Ranking

• The value of Pf certainly impacts the performance of the
approach. The authors empirically found that 0.4 < Pf < 0.5
produces the best results.

• The authors report the best results found so far for the
benchmark adopted with only 350, 000 fitness function
evaluations.

• The approach is easy to implement.

• In 2005, an improved version of SR was introduced. In this
case, the authors use evolution strategies and differential
variation.

41

Miscellaneous Approaches

There are two other approaches that we will also briefly discuss:

• A Simple Multimembered Evolution Strategy (SMES)

• The α Constrained Method

42

A Simple Multimembered Evolution Strategy

Mezura-Montes and Coello [2005] proposed an approach based on a
(μ + λ) evolution strategy. Individuals are compared using the
following criteria (originally proposed by [Deb, 2000]):

1. Between two feasible solutions, the one with the highest fitness
value wins.

2. If one solution is feasible and the other one is infeasible, the
feasible solution wins.

3. If both solutions are infeasible, the one with the lowest sum of
constraint violation is preferred.

43

A Simple Multimembered Evolution Strategy

Additionally, the approach has 3 main mechanisms:

1. Diversity Mechanism: The infeasible solution which is
closest to become feasible is retained in the population, so that
it is recombined with feasible solutions.

2. Combined Recombination: Panmictic recombination is
adopted, but with a combination of the discrete and
intermediate recombination operators.

3. Stepsize: The initial stepsize of the evolution strategy is
reduced so that finer movements in the search space are
favored.

44573

A Simple Multimembered Evolution Strategy

This approach provided highly competitive results with respect to
stochastic ranking, the homomorphous maps and ASCHEA while
performing only 240,000 fitness function evaluations.

In a further paper, similar mechanisms were incorporated into a
differential evolution algorithm, obtaining even better results.

The approach is easy to implement and robust.

45

The α Constrained Method

This is a transformation method for constrained optimization
introduced by Takahama [1999]. Its main idea is to define a
satisfaction level for the constraints of a problem. The approach
basically adopts a lexicographic order with relaxation of the
constraints. Equality constraints can be easily handled through the
relaxation of the constraints.

46

The α Constrained Method

In [Takahama and Sakai, 2005], this approach is coupled to a
modified version of Nelder and Mead’s method. The authors argue
that Nelder and Mead’s method can be seen as an evolutionary
algorithm in which, for example, the variation operators are:
reflection, contraction and expansion. The authors also extend this
method with a boundary mutation operator, the use of multiple
simplexes, and a modification to the traditional operators of the
method, as to avoid that the method gets easily trapped in a local
optimum.

47

The α Constrained Method

The approach was validated using a well-known benchmark of 13
test functions. Results were compared with respect to stochastic
ranking. The number of evaluations performed was variable and
ranged from 290,000 to 330,000 evaluations in most cases. The
results found were very competitive, although the approach had
certain sensitivity to the variation of some of its parameters. In a
further paper, Takahama and Sakai [2006] another technique for
relaxing the constraints, but using a parameter called ε. In this
case, differential evolution is the search engine, and a
gradient-based mutation operator is adopted.

48574

Special representations and operators

Some researchers have decided to develop special representation
schemes to tackle a certain (particularly difficult) problem for which
a generic representation scheme (e.g., the binary representation
used in the traditional genetic algorithm) might not be appropriate.

49

Special representations and operators

Due to the change of representation, it is necessary to design
special genetic operators that work in a similar way than the
traditional operators used with a binary representation. For
example: Random Keys [Bean, 1992, 1994].

50

Special representations and operators

A more interesting type of approaches within this group are the
so-called “Decoders”. The emphasis of these approaches is to map
chromosomes from the infeasible region into the feasible region of
the problem to solve. In some cases, special operators have also
been designed in order to produce offspring that lie on the
boundary between the feasible and the infeasible region.

51

Special representations and operators

A more intriguing idea is to transform the whole feasible region
into a different shape that is easier to explore. The most important
approach designed along these lines are the “homomorphous maps”
[Koziel & Michalewicz, 1999]. This approach performs a
homomorphous mapping between an n-dimensional cube and a
feasible search space (either convex or non-convex). The main idea
of this approach is to transform the original problem into another
(topologically equivalent) function that is easier to optimize by an
evolutionary algorithm.

52575

Special representations and operators

The convex case is the following:

T

r

x

0

0

0

0
y

F

53

Special representations and operators

The non-convex case is the following:

��������������������������������������� �� ��������������������������������F

F
r 0

t t t t t t1 2 3 4 5 6

S

t

0 1

54

Special representations and operators

The Homomorphous Maps (HM) was for some time, the most
competitive constraint-handling approach available (until the
publication of Stochastic Ranking). However, the implementation
of the algorithm is more complex, and the experiments reported
required a high number of fitness function evaluations (1, 400, 000).

55

Special representations and operators

The version of HM for convex feasible regions is very efficient.
However, the version for non-convex feasible regions requires a
parameter v and a binary search procedure to find the intersection
of a line with the boundary of the feasible region.

56576

Repair algorithms

This sort of approach consists in devising a procedure (or
mechanism) that allows to transform an infeasible solution into a
feasible one (i.e., we “repair” the infeasible individual). Such a
repaired version can be used either for evaluation only, or it can
also replace (with some probability) the original individual in the
population.

57

Repair algorithms

Liepins and co-workers [1990,1991] showed, through an empirical
test of EA performance on a diverse set of
constrained-combinatorial optimization problems, that a repair
algorithm is able to surpass other approaches in both speed and
performance.

58

Repair algorithms

GENOCOP III [Michalewicz & Nazhiyath, 1995] also uses repair
algorithmss. The idea is to incorporate the original GENOCOP
system [Michalewicz & Janikow, 1991] (which handles only linear
constraints) and extend it by maintaining two separate
populations, where results in one population influence evaluations
of individuals in the other population. The first population consists
of the so-called search points which satisfy linear constraints of the
problem; the feasibility (in the sense of linear constraints) of these
points is maintained by specialized operators. The second
population consists of feasible reference points. Since these
reference points are already feasible, they are evaluated directly by
the objective function, whereas search points are “repaired” for
evaluation.

59

Repair algorithms

Xiao and co-workers [1995] used a repair algorithm to transform an
infeasible path of a robot trying to move between two points in the
presence of obstacles, so that the path would become feasible (i.e.,
collision-free). The repair algorithm was implemented through a set
of carefully designed genetic operators that used knowledge about
the domain to bring infeasible solutions into the feasible region in
an efficient way. Other authors that have used repair algorithms
are Orvosh and Davis [1994], Mühlenbein [1992], Le Riche and
Haftka [1994], and Tate and Smith [1995].

60577

Repair algorithms

There are no standard heuristics for the design of repair
algorithms: normally, it is possible to use a greedy algorithm (i.e.,
an optimization algorithm that proceeds through a series of
alternatives by making the best decision, as computed locally, at
each point in the series), a random algorithm or any other heuristic
which would guide the repair process. However, the success of this
approach relies mainly on the ability of the user to come up with
such a heuristic.

61

Repair algorithms

Another interesting aspect of this technique is that normally an
infeasible solution that is repaired is only used to compute its
fitness, but the repaired version is returned to the population only
in certain cases (using a certain probability). The question of
replacing repaired individuals is related to the so-called Lamarckian
evolution, which assumes that an individual improves during its
lifetime and that the resulting improvements are coded back into
the chromosome.

62

Repair algorithms

Some researchers like Liepins and co-workers [1990,1991] have taken
the never replacing approach (that is, the repaired version is never
returned to the population), while other authors such as Nakano
[1991] have taken the always replacing approach. Orvosh and Davis
[1993,1994] reported a so-called 5% rule for combinatorial
optimization problems, which means that EAs (applied to
combinatorial optimization problems) with a repairing procedure
provide the best result when 5% of the repaired chromosomes
replace their infeasible originals. Michalewicz [1996] has reported,
however, that a 15% replacement rule seems to be the best choice
for numerical optimization problems with nonlinear constraints.

63

Repair algorithms

When an infeasible solution can be easily (or at least at a low
computational cost) transformed into a feasible solution, repair
algorithms are a good choice. However this is not always possible
and in some cases repair operators may introduce a strong bias in
the search, harming the evolutionary process itself [Smith & Tate,
1993].

64578

Repair algorithms

Furthermore, this approach is problem-dependent, since a specific
repair algorithm has to be designed for each particular problem.
Also, in its early days, this sort of approach was mostly used in
combinatorial optimization problems. However, in recent years, this
has become a relatively active research area (see for example
[Salcedo-Sanz, 2009]).

65

Separation of constraints and objectives

Unlike penalty functions which combine the value of the objective
function and the constraints of a problem to assign fitness, these
approaches handle constraints and objectives separately. Some
examples:

• Coevolution: Use two populations that interact with each
other and have encounters [Paredis, 1994].

66

Separation of constraints and objectives

• Superiority of feasible points: The idea is to assign always
a higher fitness to feasible solutions [Powell & Skolnick, 1993;
Deb, 2000].

• Behavioral memory: Schoenauer and Xanthakis [1993]
proposed to satisfy, sequentially, the constraints of a problem.

67

Separation of constraints and objectives

• Use of multiobjective optimization concepts: The main
idea is to redefine the single-objective optimization of f(�x) as a
multiobjective optimization problem in which we will have
m + 1 objectives, where m is the total number of constraints.
Then, any multi-objective evolutionary algorithm can be
adopted [Coello et al., 2002; Deb, 2001]. Note however, that
the use of multiobjective optimization is not straightforward,
and several issues have to be taken into consideration.

68579

Separation of constraints and objectives

This last type of approach has been very popular in the last few
years. For example:

• Surry & Radcliffe [1997] proposed COMOGA (Constrained
Optimization by Multiobjective Optimization Genetic
Algorithms) where individuals are Pareto-ranked based on the
sum of constraint violation. Then, solutions can be selected
using binary tournament selection based either on their rank or
their objective function value.

69

Separation of constraints and objectives

• Zhou et al. [2003] proposed a ranking procedure based on the
Pareto Strength concept (introduced in SPEA) for the
bi-objective problem, i.e. to count the number of individuals
which are dominated for a given solution. Ties are solved by
the sum of constraint violation (second objective in the
problem). The Simplex crossover (SPX) operator is used to
generate a set of offspring where the individual with the
highest Pareto strength and also the solution with the lowest
sum of constraint violation are both selected to take part in the
population for the next generation.

70

Separation of constraints and objectives

• Venkatraman and Yen [2005] proposed a generic framework
divided in two phases: The first one treats the NLP as a
constraint satisfaction problem i.e. the goal is to find at least
one feasible solution. To achieve that, the population is ranked
based only on the sum of constraint violation. The second
phase starts when the first feasible solution was found. At this
point, both objectives (original objective function and the sum
of constraint violation) are taken into account and
nondominated sorting [Deb, 2002] is used to rank the
population.

71

Separation of constraints and objectives

• Hernandez et al. [2004] proposed an approach named IS-PAES
which is based on the Pareto Archive Evolution Strategy
(PAES) originally proposed by Knowles and Corne [2000].
IS-PAES uses an external memory to store the best set of
solutions found. Furthermore, it adopts a shrinking mechanism
to reduce the search space. The multiobjective concept is used
in this case as a secondary criterion (Pareto dominance is used
only to decide whether or not a new solution is inserted in the
external memory).

72580

Separation of constraints and objectives

Possible problems of the use of MO concepts:

Runarsson and Yao [2005] presented a comparison of two versions
of Pareto ranking in constraint space: (1) considering the objective
function value in the ranking process and (2) without considering
it. These versions were compared against a typical over-penalized
penalty function approach. The authors found that the use of
Pareto Ranking leads to bias-free search, then, they concluded that
it causes the search to spend most of the time searching in the
infeasible region; therefore, the approach is unable to find feasible
solutions (or finds feasible solutions with a poor value of the
objective function).

73

Separation of constraints and objectives

Possible problems of the use of MO concepts:

Note however, that “pure” Pareto ranking is rarely used as a
mechanism to handle constraints, since some bias is normally
introduced to the selection mechanism (when a constraint is
satisfied, it makes no sense to keep using it in the Pareto
dominance relationship).

74

Hybrid methods

Within this category, we consider methods that are coupled with
another technique (either another heuristic or a mathematical
programming approach). Examples:

• Adeli and Cheng [1994] proposed a hybrid EA that integrates
the penalty function method with the primal-dual method.
This approach is based on sequential minimization of the
Lagrangian method.

75

Hybrid methods

• Kim and Myung [1997] proposed the use of an evolutionary
optimization method combined with an augmented Lagrangian
function that guarantees the generation of feasible solutions
during the search process.

• Constrained optimization by random evolution
(CORE): This is an approach proposed by Belur [1997] which
combines a random evolution search with Nelder and Mead’s
method [1965].

76581

Hybrid methods

• Ant System (AS): The main AS algorithm is a multi-agent
system where low level interactions between single agents (i.e.,
artificial ants) result in a complex behavior of the whole ant
colony. Although mainly used for combinatorial optimization,
AS has also been successfully applied to numerical optimization
[Bilchev & Parmee, 1995; Leguizamon, 2004]. Some of the
recent research in this area focuses on the exploration of the
boundary between the feasible and infeasible regions
[Leguizamon & Coello, 2006].

77

Hybrid methods

• Simulated Annealing (SA): Wah & Chen [2001] proposed a
hybrid of SA and a genetic algorithm (GA). The first part of
the search is guided by SA. After that, the best solution is
refined using a GA. To deal with constraints, Wah & Chen use
Lagrangian Multipliers.

78

Hybrid methods

• Artificial Immune System (AIS): Hajela and Lee [1996]
proposed a GA hybridized with an AIS (based on the negative
selection approach). The idea is to adopt as antigens some
feasible solutions and evolve (in an inner GA) the antibodies
(i.e., the infeasible solutions) so that they are “similar” (at a
genotypic level) to the antigens.

79

Hybrid methods

• Cultural Algorithms: In this sort of approach, the main idea
is to preserve beliefs that are socially accepted and discard (or
prune) unacceptable beliefs. The acceptable beliefs can be seen
as constraints that direct the population at the
micro-evolutionary level. Therefore, constraints can influence
directly the search process, leading to an efficient optimization
process.

80582

Hybrid methods

• In other words, when using cultural algorithms, some sort of
knowledge is extracted during the search process and is used to
influence the evolutionary operators as to allow a more efficient
search. The first versions of cultural algorithms for constrained
optimization had some memory handling problems [Chung &
Reynolds, 1996], but later on, they were improved using spatial
data structures that allowed to handle problems with any
number of decision variables [Coello & Landa, 2002].

81

Test Functions

Michalewicz and Schoenauer [1996] proposed a set of test functions,
which was later expanded by Runarsson and Yao [2000]. The
current set contains 13 test functions. These test functions contain
characteristics that are representative of what can be considered
“difficult” global optimization problems for an evolutionary
algorithm.

82

Test Functions

Note however, that many other test functions exist. See for example:

Mezura Montes, Efrén and Coello Coello, Carlos A., What Makes a

Constrained Problem Difficult to Solve by an Evolutionary

Algorithm, Technical Report EVOCINV-01-2004, Evolutionary

Computation Group at CINVESTAV, Sección de Computación,

Departamento de Ingenieŕıa Eléctrica, CINVESTAV-IPN, México,

February 2004.

C. A. Floudas and P. M. Pardalos, A Collection of Test Problems for

Constrained Global Optimization Algorithms, Number 455 in

Lecture Notes in Computer Science. Springer-Verlag, 1990.

Christodoulos A. Floudas et al. (editors), Handbook of Test Problems in

Local and Global Optimization, Kluwer Academic Publishers,

Dordrecht, 1999.

83

Test Functions (Current Benchmark)

Problem n Type of function ρ LI NI LE NE

g01 13 quadratic 0.0003% 9 0 0 0

g02 20 nonlinear 99.9973% 1 1 0 0

g03 10 nonlinear 0.0026% 0 0 0 1

g04 5 quadratic 27.0079% 0 6 0 0

g05 4 nonlinear 0.0000% 2 0 0 3

g06 2 nonlinear 0.0057% 0 2 0 0

g07 10 quadratic 0.0000% 3 5 0 0

g08 2 nonlinear 0.8581% 0 2 0 0

g09 7 nonlinear 0.5199% 0 4 0 0

g10 8 linear 0.0020% 3 3 0 0

g11 2 quadratic 0.0973% 0 0 0 1

g12 3 quadratic 4.7697% 0 93 0 0

g13 5 nonlinear 0.0000% 0 0 1 2

84583

Test Functions

Additional test functions have been proposed, and a new
benchmark, consisting of 24 test functions (which include the 13
indicated in the previous slide) is now more popular. See:

J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N.
Suganthan, C. A. Coello Coello, K. Deb, Problem Definitions
and Evaluation Criteria for the CEC 2006, Special Session
on Constrained Real-Parameter Optimization, Technical
Report, Nanyang Technological University, Singapore, 2006.

There is also a new set of test problems that were introduced at the
2010 World Congress on Computational Intelligence (WCCI’2010).
This set consists of 18 scalable test problems.

85

Test Case Generators

Michalewicz [2000] proposed a Test Case Generator for constrained
parameter optimization techniques. This generator allows to build
test problems by varying several features such as: dimensionality,
multimodality, number of constraints, connectedness of the feasible
region, size of the feasible region with respect to the whole search
space and ruggedness of the objective function.

86

Test Case Generators

The first version of this test problems generator had some problems
because the functions produced were symmetric. This motivated
the development of a new version called TCG-2 [Schmidt et al.,
2000].

87

An Ensemble of Constraint-Handling Techniques

Mallipeddi and Suganthan [2010] proposed the use of an ensemble
of constraint-handling techniques. The idea is to have several
constraint-handling technique, each with its own population and
parameters. Each population produces its offspring and evaluates
them. However, the offspring compete not only against its own
population, but also against the others. Thus, a certain offspring
could be rejected by its population, while being accepted by
another population. This intends the automate the selection of the
best constraint-handling technique for a certain problem, based on
the fact that none of them will be best in all cases (remember the
No-Free-Lunch theorem!).

88584

Some Recommendations

• Study (and try first) traditional mathematical programming
techniques (e.g., gradient-based methods, Nelder-Mead,
Hooke-Jeeves, etc.).

• If interested in numerical optimization, try evolution strategies
or differential evolution, instead of using genetic algorithms.
Also, the combination of parents and offspring in the selection
process tends to produce better performance.

• Pay attention to diversity. Keeping populations in which every
individual is feasible is not always a good idea.

• Normalizing the constraints of the problem is normally a good
idea.

89

Current Research Topics

• New constraint-handling approaches (e.g., based on
multiobjective optimization concepts).

• Old constraint-handling techniques with new search engines
(e.g., differential evolution, particle swarm optimization, ant
colony, etc.).

• Constraint-handling techniques for multi-objective evolutionary
algorithms [Yen, 2009].

• Self-adaptation mechanisms for constrained optimization
[Brest, 2009].

90

Current Research Topics

• Time complexity analysis of evolutionary algorithms used for
solving constrained problems (particularly, the role of penalty
factors in the time complexity of an EA) [Zhou & He, 2007].

• Hybrids of EAs with mathematical programming techniques
(e.g., evolution strategy + simplex, use of Lagrange multipliers,
etc.).

• Approaches that reduce the number of objective function
evaluations performed (e.g., surrogate models, fitness
inheritance, fitness approximation).

91

Current Research Topics

• Test function generators (how to build them and make them
reliable? Test functions available online?).

• New metrics that allow the evaluate the online performance of
a constraint-handling technique.

• Stopping criteria for constrained optimization using
evolutionary algorithms [Zielinski, 2009].

• Special operators for exploring the boundary between the
feasible and infeasible regions [Leguizamón & Coello, 2009].

• Dynamic constraints [Nguyen & Yao, 2012].

92585

To know more about constraint-handling

techniques used with EAs

Please visit our constraint-handling repository located at:

http://www.cs.cinvestav.mx/˜constraint

The repository currently (as of June 30th, 2015) had 1353
bibliographic references.

93

Suggested Readings

Efrén Mezura-Montes (editor), Constraint-Handling in
Evolutionary Optimization, Springer, 2009, ISBN:
978-3-642-00618-0.

94

Suggested Readings

• Efrén Mezura-Montes and Carlos A. Coello Coello,
Constraint-Handling in Nature-Inspired Numerical
Optimization: Past, Present and Future, Swarm and
Evolutionary Computation, Vol. 1, No. 4, pp. 173–194,
December 2011.

95

Suggested Readings

• Zbigniew Michalewicz and Marc Schoenauer, Evolutionary

Algorithms for Constrained Parameter Optimization

Problems, Evolutionary Computation, Vol. 4, No. 1, pp. 1–32,

1996.

• Carlos A. Coello Coello, Theoretical and Numerical

Constraint-Handling Techniques used with Evolutionary

Algorithms: A Survey of the State of the Art, Computer

Methods in Applied Mechanics and Engineering, Vol. 191, No.

11–12, pp. 1245–1287, January 2002.

96586

Suggested Readings

• Yuren Zhou and Jun He, A Runtime Analysis of Evolutionary

Algorithms for Constrained Optimization Problems, IEEE

Transactions on Evolutionary Computation, Vol. 11, No. 5, pp.

608–619, October 2007.

• Thomas P. Runarsson and Xin Yao, Stochastic Ranking for

Constrained Evolutionary Optimization, IEEE Transactions

on Evolutionary Computation, 4(3):284–294, September 2000.

97

Suggested Readings

• Martin Schmidt and Zbigniew Michalewicz, Test-Case Generator

TCG-2 for Nonlinear Parameter Optimization, in M.

Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo,

and H.-P. Schwefel, editors, Proceedings of 6th Parallel Problem

Solving From Nature (PPSN VI), pp. 539–548, Heidelberg,

Germany, September 2000, Springer-Verlag. Lecture Notes in

Computer Science Vol. 1917.

• Alice E. Smith and David W. Coit, Constraint Handling

Techniques–Penalty Functions, in Thomas Bäck, David B.

Fogel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary

Computation, chapter C 5.2. Oxford University Press and Institute

of Physics Publishing, 1997.

98

Suggested Readings

• R. Mallipeddi and P. N. Suganthan, Problem Definitions and

Evaluation Criteria for the CEC 2010 Competition on

Constrained Real-Parameter Optimization, Technical Report,

Nanyang Technological University, Singapore, 2010. Available at:

http://www.ntu.edu.sg/home/EPNSugan/.

• Rammohan Mallipeddi and Ponnuthurai N. Suganthan, Ensemble

of Constraint Handling Techniques, IEEE Transactions on

Evolutionary Computation, Vol. 14, No. 4, pp. 561-579, August

2010.

99

Suggested Readings

• Trung Thanh Nguyen and Xin Yao, Continuous Dynamic

Constrained Optimization—The Challenges, IEEE

Transactions on Evolutionary Computation, Vol. 16, No. 6, pp.

769–786, December 2012.

• Oliver Kramer, A Review of Constraint-Handling Techniques

for Evolution Strategies, Applied Computational Intelligence and

Soft Computing, Vol. 2010, Article ID 185063, No. 1, pp. 1–11,

January 2010.

• Sancho Salcedo-Sanz, A Survey of Repair Methods Used as

Constraint Handling Techniques in Evolutionary

Algorithms, Computer Science Review, Vol. 3, No. 3, pp. 175–192,

2009.

100587

