
Hybridizing Different Local Search Algorithms with Each
Other and Evolutionary Computation: Better Performance

on the Traveling Salesman Problem

Yuezhong Wu, Thomas Weise*, and Weichen Liu
UBRI, School of Computer Science and Technology, University of Science and Technology of China

Hefei, Anhui, China, 230027, tweise@mail.ustc.edu.cn. * Dr. Weise is the corresponding author.

ABSTRACT

We propose the new concept of hybridizing different local
search algorithms with each other for the TSP. The new hy-
brids outperform their component algorithms. We then hy-
bridize them with an Evolutionary Algorithm and Population-
based ACO. The resulting EC-LS-LS hybrids perform even
better.
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1. INTRODUCTION
The Traveling Salesman Problem (TSP) [1] is defined as

follows: Given n cities, a salesman departs from a start city,
visits each city exactly once, and then returns back to the
start city. The task is to find the city visiting order result-
ing in the minimal overall travel distance. Many algorithms
have been applied to the TSP, from Evolutionary Computa-
tion (EC) [9] to exact methods like Branch and Bound [4].
We make the following contributions: We introduce the new
concept of the LS-LS hybrids (for the TSP), i.e., hybrid al-
gorithms combining two local search (LS) methods. We ex-
plore several LS-LS hybrids combining Multi-Neighborhood
Search (MNS) [10], the Lin-Kernighan Heuristic (LK) [5],
and FSM** [6]. We find that they almost always signif-
icantly outperform their LS components. We further hy-
bridize our LS-LS hybrids with both Population-based ACO
(PACO) [2] and Evolutionary Algorithms (EAs) [9]. We find
that the resulting EC-LS-LS algorithms perform better than
any other method in our experiments and in [6, 10, 12].

2. INVESTIGATED ALGORITHMS
LS algorithms for the TSP start at a random or

heuristically-generated solution (tour). They remember the
best solution discovered so far and try to improve it step
by step. If a local optimum is reached, the LS applies a
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larger random modification. MNS is a LS that, in each it-
eration, scans several neighborhoods of the current solution
and enqueues all possible improving moves. The best move is
carried out. All invalidated intersecting moves are dropped
and the remaining best move is applied. If the queue be-
comes empty, another scan is performed. If no improving
moves can be found, a random sub-sequence of the current
tour is randomly shuffled, which we refer to as soft restart.
The LK heuristic dominates today’s TSP research. We use
the implementation from [12]. The Ejection Chain Method
(ECM) FSM** [6] is an improvement of [7]. Although both
LK and FSM** outperform MNS, the hybrids of MNS with
Evolutionary Algorithms (EAs) and the Population-based
Ant Colony Optimization (PACO) outperform similar hy-
brids based on them [6, 12].

Research on hybrid (“Memetic”) algorithms is almost en-
tirely focused on combining global and local search algo-
rithms (EC-LS), as done in [6, 10, 12, 13]. However, LS al-
gorithms can already exhibit different behaviors which might
complement each other. MNS can find relatively good solu-
tions quickly but often gets stuck in local optima. LK and
FSM** initially are slower but find better final results [6, 12].
We pairwise hybridize LK, FSM**, and MNS with each
other. We apply one LS approach until it cannot improve
the solution anymore. The resulting tour is then passed as
starting point to the other LS. Once this second LS gets
trapped in a local optimum, we use its result as starting
point again for the first LS. This is repeated until both LS
methods cannot find an improvement, in which case we ap-
ply the same soft restart method as above. This is a gener-
alization of Variable Neighborhood Search (VNS) [3], which
explores the neighborhood of the current solution until it
reaches a local optimum. It then uses another search op-
erator to escape from it. With our new LS-LS hybrids, we
extend the concept to whole LS algorithms instead of just
search operators.

We investigate MA(µ +, λ)-LS and MA(µ +, λ)-LS-LS,
which combine (µ +, λ) EAs with LS and LS-LS, respec-
tively. The first populations of our MAs stem from the Edge-
Greedy, Double Minimum Spanning Tree, Savings, Double-
Ended Nearest Neighbor, and Nearest Neighbor Heuris-
tic [10]. We apply Edge Crossover [11] at a crossover rate
of 1. The LS component of the MA is applied to every so-
lution generated, both by the initialization heuristics and
crossover. We also hybridize PACO(k,l) with LS and LS-
LS. Here, in each iteration, l tours are created in the same
way as in the standard ACO. The “oldest” solution in the
archive of size k is replaced by the best of the newly gener-
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PACO(3,10)-LK10-MNS (rank 1), PACO(3,25)-LK10-MNS (2),
PACO(5,10)-LK10-MNS (3), MA(16+64)-FSM**-LK10 (4),
PACO(5,10)-FSM**-LK10 (5), PACO(3,25)-FSM**-LK10 (6),
MA(16,64)-FSM**-LK10 (7), PACO(3,10)-FSM**-LK10 (8),
MA(16,64)-LK10-MNS (9), MA(2,8)-LK10-MNS (10),
MA(16+64)-LK10-MNS (11), MA(2,4)-LK10-MNS (12.5),
MA(2,8)-FSM**-LK10 (12.5), MA(2+8)-FSM**-LK10 (14),
MA(2+4)-FSM**-LK10 (15.5), PACO(5,10)-MNS (15.5),
MA(2+4)-LK10-MNS (17.5), MA(2,4)-FSM**-LK10 (17.5),
PACO(3,10)-MNS (19.5), PACO(3,25)-MNS (19.5), MA(2+8)-LK10-MNS (21),
PACO(3,10)-FSM** (22), PACO(5,10)-FSM** (23), PACO(3,25)-FSM** (24),
MA(2+8)-FSM** (25), MA(2+4)-FSM** (26), MA(16,64)-FSM** (27),
MA(16+64)-FSM** (28), MA(2,4)-FSM** (29), MA(2,8)-FSM** (30),
MA(16+64)-MNS (31), MA(2+4)-MNS (32), MA(2+8)-MNS (33),
MA(16,64)-MNS (34), MA(2,8)-MNS (35), PACO(3,10)-LKn (36),
PACO(3,25)-LKn (37), PACO(5,10)-LKn (38), LK10-MNS (39),
FSM**-LK10 (40), FSM**-LK5 (41), FSM**-LK20 (42), LK10-FSM** (43),
MA(2,4)-MNS (44), LK5-FSM** (45), FSM**-LK30 (46), FSM**-MNS (47),
LK5-MNS (48), FSM**-LK40 (49), FSM**-LKn (50), LK20-MNS (51),
LK20-FSM** (52), LK20 (53), LK30 (54), LK40-MNS (55), LK30-MNS (56),
LK30-FSM** (57), LK10 (58), LK40 (59), FSM** (60), LK40-FSM** (61),
LK5 (62), MA(16+64)-LKn (63), LKn-FSM** (64), MA(16,64)-LKn (65),
LKn-MNS (66), MA(2,8)-LK (67), MA(2+4)-LK (68), MA(2,4)-LK (69),
LKn (70), MA(2+8)-LKn (71), MNS-LK40 (73), MNS-LK30 (73),
MNS-LK20 (73), MNS-FSM** (75), MNS-LK10 (76), MNS-LK5 (77),
MNS-LKn (78), and MNS (79).

Figure 1: Algorithm ranking from best to worst, based on
various performance measures and statistics (see [10] for de-
tails). The different algorithm types pure local search, LS-
LS hybrid, EC-LS hybrid, and EC-LS-LS hybrid are high-
lighted.

ated solutions. The pheromone on an edge is proportional
to the number of times the edge is contained in the archive.
The initial populations are again obtained heuristically, in
the same way as in the MAs.

3. RESULTS AND DISCUSSION
We perform 30 independent runs for 79 algorithm setups

on all 110 symmetric TSPLib [8] benchmark cases. We
define the following LS setups: FSM**, MNS, and 6 se-
tups of the LK heuristic, differing in their candidate set
size s =∈ {5, 10, 20, 30, 40, n} and named LKs, i.e., LK5,
LK10, . . . , LKn, respectively. We compare them to 26 LS-
LS hybrids, whose name consists of the two component LS
algorithms in the cyclically applied sequence. We construct
EC-LS and EC-LS-LS hybrids which are named after the EC
method followed by the applied LS. In Figure 1, we present
an abridge algorithm performance ranking generated by the
TSP Suite [10].Our experiments have led us to four major
conclusions:

1. The new LS-LS hybrids are better than their pure LS
algorithm components. This means that the new idea
of combining the strengths of different LS algorithms
is very promising.

2. The LS-LS hybrids are still slightly worse than the
EC-LS algorithms. This means that a global search
component is necessary in a good TSP solver.

3. The new EC-LS-LS hybrids outperform the LS-LS al-
gorithms as well as EC-LS hybrids. The best overall
algorithm, PACO(3,10)-LK10-MNS, unites the global
search strength of PACO, the ability to find good so-
lutions of the LK heuristic, and the fast exploitation
speed of MNS.

4. In [6, 10, 12, 13] as well as the present study, PACO is
the significantly better host EC method for hybridiza-
tion than an EA. However, we also find an exception
to this rule, as MAs with FSM**-LK10 are better than
the corresponding PACO versions.
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