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Instructor/Presenter

• Ken Stanley’s connections to Generative 
and Developmental Systems (GDS):
– Co-author of 2003 GDS review paper,            

A Taxonomy for Artificial Embryogeny
– Co-founder of GECCO GDS Track in 2007 and 

Co-chair of track from 2007-2009
(now integrated into “Complex Systems” track)

– Co-inventor of NEAT, CPPN indirect encoding, 
and the HyperNEAT GDS algorithm

– At least 20 GDS-related publications 
K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9(2):93–130, 2003.
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Course Agenda

• Part 1: Intro to GDS
– Motivation
– Classical Encodings
– Dimensions of Development

• Break
• Part 2: Exploring Abstraction

– CPPNs
– HyperNEAT
– Representations and theoretical issues
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Objectives of the Tutorial 

• At the end, you will know:
– What GDS is about
– Motivation for GDS
– Historical precedent
– Popular approaches
– Biological analogies
– Recent approaches
– Representational properties
– Theoretical issues
– Goals for the field 4
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Inspiration vs. Simulation

• Often confused in GDS
– Simulation: Model biology to learn about biology
– Inspiration: Abstract biology to create new algorithms

• This tutorial’s perspective: Looking for inspiration
– What from biology is essential to achieve what we 

want?
– What can be ignored?
– What should we add that is biologically implausible yet 

works better for our purposes?

5

Goal: Evolve Systems of Biological 
Complexity

• 100 trillion connections in the human brain
• 30,000 genes in the human genome
• How is this possible?

6

Development

(embryo image from nobelprize.org) 
7

Solving this Problem Could Solve 
Many Others

8
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Historical Precedent

• Turing (1952) was interested in 
morphogenesis
– Experimented with reaction-diffusion 

equations in pattern generation
• Lindenmayer (1968) investigated plant 

growth
– Developed L-systems, a grammatical rewrite 

system that abstracts how plants develop

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical 
Biology, 18, 280–299, 300–315.
Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37–72.
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A Field with Many Names
• Generative and Developmental Systems (GECCO track)
• Artificial Embryogeny
• Artificial Ontogeny
• Computational Embryogeny
• Computational Embryology
• Developmental Encoding
• Indirect Encoding
• Generative Encoding
• Generative Mapping
• …
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Development is Powerful Because 
of Reuse

• Genetic information is reused during embryo 
development

• Many structures share information
• Allows enormous complexity to be encoded 

compactly

(James Madison University http://orgs.jmu.edu/strength/KIN_425/kin_425_muscles_calves.htm)

11

The Unfolding of Structure 
Allows Reuse

12
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Rediscovery Unnecessary with 
Reuse

• Repeated substructures should only need to be 
represented once

• Then repeated elaborations do not require 
rediscovery

• Rediscovery is expensive and improbable
• (Development is powerful for search even 

though it is a property of the mapping)
13

Therefore, GDS

Symmetry Repetition Repetition
with variation

• Indirect encoding: Genes do not map directly to 
units of structure in phenotype

• Phenotype develops from embryo into mature form
• Genetic material can be reused
• Many existing developmental encoding systems

14

Some Major Issues in GDS
• Phenotypic duplication can be brittle

• Variation on an established convention is 
powerful

• Reuse with variation is common in nature 15

Classic Developmental 
Encodings

• Grammatical (Generative)
– Utilize properties of grammars and computer 

languages
– Subroutines and hierarchy

• Cell chemistry (Development)
– Simulate low-level chemical and biological 

properties
– Diffusion, reaction, growth, signaling, etc.

16
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Grammatical Example 1

• L-systems: Good for fractal-like structures, 
plants, highly regular structures

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical 
Biology, 18, 280–299, 300–315.
Lindenmayer, A. (1974). Adding continuous components to L-systems. In G. Rozenberg & A. Salomaa (Eds.), L systems: 
Lecture notes in computer science 15 (pp. 53–68). Heidelberg, Germany: Springer-Verlag.
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L-System Evolution Successes

• Greg Hornby’s Ph.D. dissertation topic 
(http://ic.arc.nasa.gov/people/hornby)

• Clear advantage over direct encodings

18

Growth of a Table

Hornby, G.. S. and Pollack, J. B. The Advantages of Generative Grammatical Encodings for Physical Design. Congress on 

Evolutionary Computation. 2001. 19

Grammatical Example 2

• Cellular Encoding (CE; Gruau 1993, 1996)

F. Gruau. Neural network synthesis using cellular encoding and the 
genetic algorithm. PhD thesis, Laboratoire de L'informatique du 
Paralllisme, Ecole Normale Supriere de Lyon, Lyon, France, 1994. 

20
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Cell Chemistry Encodings

21

Cell Chemistry Example: 
Bongard’s Artificial Ontogeny 

Bongard, J. C. and R. Pfeifer 
(2003) Evolving Complete Agents 
Using Artificial Ontogeny, in Hara, 
F. and R. Pfeifer, (eds.), Morpho-
functional Machines: The New 
Species (Designing Embodied 
Intelligence) Springer-Verlag, pp. 
237-258. 

Bongard, J. C. and R. Pfeifer (2001a) Repeated Structure and Dissociation of Genotypic and Phenotypic 
Complexity in Artificial Ontogeny, in Spector, L. et al (eds.), Proceedings of The Genetic and Evolutionary 
Computation Conference, GECCO-2001. San Francisco, CA: Morgan Kaufmann publishers, pp. 829-836. 
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Cell Chemistry Example 2

• Federici 2004: Neural networks inside cells

Daniel Roggen and Diego Federici, Multi-cellular development: is there scalability and robustness to gain? In: Proceedings of 
PPSN VIII 2004 The 8th International Conference on Parallel Problem Solving from Nature, Xin Yao and al. ed., pp 391-400, 
(2004). 23

Differences in GDS 
Implementations

• Encoding: Grammatical vs. Cell-chemistry vs. 
Other (coming later)

• Cell Fate: Final role determined in several ways
• Targeting: Special or relative target specification
• Canalization: Robustness to small disturbances
• Complexification: From fixed-length genomes to 

expanding genomes

24
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Cell Fate

• Many different ways to determine ultimate role of cell
• Cell positioning mechanism can also differ from 

nature

25

Targeting

• How do cells become connected such as in a 
neural network?

• Genes may specify a specific target identity
• Or target may be specified through relative 

position

?

26

Canalization

• Crucial pathways become entrenched in 
development
– Stochasticity
– Resource Allocation
– Overproduction

Nijhout, H. F., & Emlen, D. J. (1998). Competition among body parts in the development and evolution of insect morphology. 
Proceedings of the National Academy of Sciences of the USA, 95, 3685–3689.
Waddington, C. H. (1942). Canalization of Development and the Inheritance of Acquired Characters. Nature, 150, 563.

27

Complexification through Gene 
Duplication

• Gene Duplication can add new genes in any indirect 
encoding  

• Major gene duplication event as vertebrates appeared  
• New HOX genes elaborated overall developmental 

pattern  
• Initially redundant regulatory roles are partitioned 28
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Break

• Take break
• Resume in 10 minutes

29

High-Level Abstraction: 
Compositional Pattern Producing 

Networks (CPPNs)
• An artificial indirect encoding designed to 

abstract how embryos are encoded 
through DNA (Stanley 2007)

Symmetry Repetition Repetition
with variationKenneth O. Stanley. Compositional Pattern Producing Networks: A Novel Abstraction 

of Development In: Genetic Programming and Evolvable Machines Special Issue on 
Developmental Systems 8(2): 131-162.  New York, NY: Springer, 2007

30

What is Development Really 
Doing?

• A plan upon a plan upon a plan
• Each layer lays a groundwork for the next
• A structure is built in a coordinate frame

– First the axes must be defined
– Then the core structure is situated
– Then further axes are defined
– And so on 

31

Gradients Define Axes

• Chemical gradients tell which direction is 
which, which axis is which

Y-axis X-axis

32
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Cells Know Where They Are 
Through Gradients

• Therefore, they know who needs to do 
what, and where

• Because where is now defined
• Gradients form a coordinate frame

(1982)
33

A Novel View:
The Phenotype as a Function of 

Cartesian Space

• Coordinate frames are chemical gradients
• Function is applied at all points

34

Higher Coordinate Frames are 
Functions of Lower Ones 

  yyf    )(yfyg 
Using g and x as a coordinate space, we can get h:

    ygxfuncyxh ,, 
Symmetry from 

a symmetric 
gradient

35

Segmentation is a Periodic 
Gradient

• f(periodic function) = repeating pattern
• Periodic functions mean repeating 

coordinate frames

(Wikimedia commons)

36
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Gradients Define the Body Plan

37

Gradients Can Be Composed

• Is there a general abstraction of 
composing gradients that we can evolve?

38

• A connected-graph abstraction of the 
order of and relationship between 
developmental events (no growth!)

Compositional Pattern Producing 
Networks (CPPNs)

39

Interactive Evolution:
A Way to Explore Encoding

40
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41

Parent

42

Parent

Compositional Pattern Producing 
Networks (CPPNs)

Evolutionary Elaboration 43

Imperfect Symmetry

• Gauss(x) and x provide both symmetry 
and asymmetry 44
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Repetition with Variation

45

CPPNs:Repetition with Variation

• Seen throughout nature
• A simple combination of periodic and absolute 

coordinate frames
• A novel view: not a traditional subroutine 46

47 48
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49 50

51

CPPN Patterns
From http://picbreeder.org

(All are 100% evolved: no retouching)

Jimmy Secretan, Nicholas Beato, David B. 
D.Ambrosio, Adelein Rodriguez, Adam 
Campbell, Jeremiah T. Folsom-Kovarik, and 
Kenneth O. Stanley (2011). Picbreeder: A 
Case Study in Collaborative
Evolutionary Exploration of Design Space. 
Evolutionary Computation, 19(3): 345–371,
Cambridge, MA: MIT Press
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Infinite resolution: CPPNs are mathematical expressions

53

Picbreeder Phylogenetic Tree

54

CPPNs Abstract Development 
out of Development!

• CPPN is decoded by querying each point in 
space independently: no local interaction

• The process of development need not be 
simulated

• Some Advantages:
– Patterns stored at infinite resolution
– Easily biased in fancy ways
– Perfect regeneration of damaged structure

Is development really the essential property of developmental 
systems that we’ve been looking for?  Or is there something more 
fundamental that is simply manifested through development? 55

Are Unfolding Over Time and Local 
Interaction Essential to Development?

• What is lost if they are abstracted away?
• What is the role of local interaction?

– “Where am I?”
– If I know where I am, do I need it?

• Response to CPPNs: 
– Some are arguing that intermediate 

information during development can be 
exploited by evolution 

• Still, CPPNs can be iterated over time
– CPPNs can take environmental inputs

T. Kowaliw and W. Banzhaf, Augmenting Artificial Development 
with Local Fitness, In IEEE CEC 2009

56
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Representational Properties of 
CPPNs

• Compositionality
– One pattern can be built upon another

(output of one function fed into another)
• Fracture

– Discontinuous variation of patterns
“fractured problems have a highly discontinuous 
mapping between states and optimal actions.”

• Define different regions
– Builds incrementally over evolution

57

Nate Kohl and Risto Miikkulainen (2009). Evolving Neural Networks for Strategic 
Decision-Making Problems. Neural Networks, Special issue on Goal-Directed 
Neural Systems.

The Apple

58

Stem and Body:
Fractured Regions

The Apple

How is it represented?

59

CPPN has 83 nodes, 264 connections
320 generations

Image DNA Tool

• Allows browsing CPPN 60

Press 
here
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Very Large Apple Network

61
Inputs

Outputs

Starting at the Bottom

62

d

x

y

Inputs

Starting at the Bottom

63

d

x

y

Inputs

Forming Intermediate Patterns

64

d

y

Gaussian 
Function
of inputs
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Compositionality

65Inputs

Compositionality:
Essential to 
Indirect encoding

CPPN Visualization

66Inputs

Let’s 
scroll 
gradually  
up to the 
top

CPPN Visualization

67

Origins of Fracture

68

Symmetric Main 
Body Region

Main 
source of 
asymmetry 
in apple 
stem

Asymmetric 
Stem 
Region
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CPPN Visualization

69

Let’s 
scroll up 
more

CPPN Visualization

70

Higher-Level Compositions

71

CPPN Visualization

72

Let’s 
scroll up 
again
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CPPN Visualization

73

First Output: Brightness

74

Brightness
(from HSB)

Last Outputs (at the top): 
Hue & Saturation

75

Brightness
(from HSB)

Hue

Saturation

Very Large Apple Network

76
Inputs

Outputs
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Gene Knockout Experiment

77
Inputs

Outputs
Remember this node?
(the source of stem
asymmetry)

What happens if we 
delete it? 
(gene knockout 
experiment)

78
Inputs

Outputs
Remember this node?
(the source of stem
asymmetry)

What happens if we 
delete it? 
(gene knockout 
experiment)

Watch here!

Gene Knockout Experiment

79
Inputs

Outputs
Remember this node?
(the source of stem
asymmetry)

What happens if we 
delete it? 
(gene knockout 
experiment)

Loss of asymmetry
on stem only
(the fracture is deep)

Gene Knockout Experiment The Swinging Stem

Stem angle swing
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Other Notable Fracture

• Where would you split this image?

81

50 Nodes, 141 Connections
112 Generations

Other Notable Fracture

• Masks for different parts inside the CPPN

82

Body mask

Roof mask

Wheel 
cutouts

50 Nodes, 141 Connections
112 Generations

The Mouth of the Skull

• Fracture is often surprisingly intuitive

83

23 Nodes, 57 Connections
74 Generations

Mouth mask

Head mask

Notice this connection

Scaling the Mouth

• Single gene controls the mouth aperture

84

Weight = 2.1

CPPN Output
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Scaling the Mouth

• Single gene controls the mouth aperture

85

Weight = 1.4

CPPN Output

Scaling the Mouth

• Single gene controls the mouth aperture

86

Weight = 2.1

CPPN Output

Weight = 1.4

Many Faces “Conserve” the Same 
Proto-face Mask

Knocking out Proto-face 
destroys the face

87

Cartoon Face

Proto-face
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Hypercube-based NeuroEvolution of 
Augmenting Topologies (HyperNEAT)

Kenneth O. Stanley, David B. D'Ambrosio, and Jason Gauci A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks. 
Artificial Life journal 15(2), 2009.
This GECCO: Several HyperNEAT papers in GDS and Alife tracks

• Evolving neural networks with CPPNs
• Insight: A connectivity pattern in 2-D is isomorphic to a spatial pattern in 4-D
• Result: Large-scale connectivity patterns

• See http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html for more 
information and publication links

89

Similar Regularity and Fracture 
in HyperNEAT

• Just 4-D instead of 2-D

90Clune J, Stanley KO, Pennock RT, Ofria C (2011) On the performance of indirect 
encoding across the continuum of regularity. IEEE Transactions on Evolutionary 
Computation. 15(3): 346-367. 

Fractured Neural Receptive 
Fields in HyperNEAT

91Oliver J. Coleman, Evolving Neural Networks for Visual Processing, Undergraduate 
Honours Thesis (Bachelor of Computer Science, University of New South Wales 
School of Computer Science and Engineering), 2010. 

Geometric Patterns Inside 
Evolved HyperNEAT ANNs

Influence Maps of more general solutions

Influence Maps of less general solutions
We can see 
the difference

Jason Gauci and Kenneth O. Stanley (2010). Autonomous Evolution of Topographic 
Regularities in Artificial Neural Networks. In: Neural Computation journal 22(7), pages 
1860-1898. Cambridge, MA: MIT Press.
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CPPN-encoded Creatures

93

Joshua E. Auerbach and Josh C. Bongard
On the Relationship Between Environmental and 
Mechanical Complexity in Evolved Robots
13th International Conference on the Synthesis and 
Simulation of Living Systems (ALife XIII).
East Lansing, MI, July, 2012. 

Joshua E. Auerbach and Josh C. Bongard
Evolving Complete Robots with CPPN-NEAT: The Utility of Recurrent 
Connections. 2011 Genetic and Evolutionary Computation 
Conference (GECCO 2011). Dublin, Ireland, July, 2011.

Cheney N, MacCurdy R, Clune J, Lipson H. Unshackling evolution: evolving soft 
robots with multiple materials and a powerful generative encoding. Proceedings of the 
Genetic and Evolutionary Computation Conference (GECCO 2013). Amsterdam, July 
2013. 

Sebastian Risi, Daniel Cellucci, Hod Lipson (2013).Ribosomal Robots: 
Evolved Designs Inspired by Protein Folding.
To appear in: Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO-2013). New York, NY: ACM.

A Word of Caution: 
The Objective Paradox

• The full potential of an indirect encoding 
may not be revealed by testing whether it 
can evolve to satisfy a particular objective

• Reason: Fundamental discoveries (like 
symmetry) that are essential for further 
progress may yield no objective 
improvement on task fitness (like “walk far”)

94

Example: 
Evolve a Skull and a Butterfly with CPPNs

Target Image 1 Target Image 2

Results Are Terrible

• Typical best results given 30,000 
generations (only odd runs shown)

• Question: Was it a bad fitness function?

Brian G. Woolley and Kenneth O. Stanley (2011). On the Deleterious Effects of A 
Priori Objectives on Evolution and Representation. In: Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO-2011). 
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No: The Problem is the 
Stepping Stones

• Stepping stones in GDS are complex
• Stepping stones to a skull do not look like a 

skull:

• The objective-based experiment did not reveal 
the potential of CPPN-based encoding

• Moral:  Methods that aim for diversity (like 
novelty search or behavioral diversity) will be 
essential for GDS (even with DNA!)

97Joel Lehman and Kenneth O. Stanley (2011).
Abandoning Objectives: Evolution Through the Search for Novelty Alone
In: Evolutionary Computation journal (19):2, pages 189-223, Cambridge, MA: MIT 
Press.

Mouret, J. B., & Doncieux, S. (2012). Encouraging behavioral diversity in evolutionary 
robotics: An empirical study. Evolutionary computation, 20(1), 91-133.

Where is GDS Useful?
• Problems with regularities

– Board games
– Visual processing/image recognition
– Pictures 
– Music
– Puzzles
– Architectures/morphologies 
– Brains 
– Bodies

• Problems requiring high complexity
– High-level cognition
– Strategic thinking
– Tactical thinking

• Regeneration and self-repair
Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. Proceedings of Genetic and 
Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102 (2004) 129-139. 98

Regeneration and Self-Repair
• A major interest in much GDS research
• Is self-repair a side-effect of development?

• In some encodings self-repair is not needed
– In CPPNs every cell knows its role instantaneously from 

its position
– However, some applications may not provide positional 

information

Miller J. F. Evolving a self-repairing, self-
regulating, French flag organism. 
Proceedings of Genetic and Evolutionary 
Computation Conference (GECCO 2004), 
Springer LNCS 3102 (2004) 129-139.

99

Where is GDS not Useful?

• Problems without regularity
• Simple high-precision domains

– Very small picture reproduction
• Simple control tasks

– Go to the food
– Balance the pole (5-connection solution)

100
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Long Term Issues

• What are the ultimate encodings?
• What are the ultimate applications?
• What application requires a structure of 

100 million parts and actually utilizes the 
structure?
– How can we formalize the problem?

• How can GDS combine with plasticity?
• How can we make progress despite the 

objective paradox? 101

More information
• My Homepage: 

http://www.cs.ucf.edu/~kstanley
• NEAT Users Group: 

http://groups.yahoo.com/group/neat
• Evolutionary Complexity Research Group: 

http://eplex.cs.ucf.edu
• Picbreeder: http://picbreeder.org
• HyperNEAT Information: 

http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html

• Email: kstanley@eecs.ucf.edu 102
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