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ABSTRACT

We suggest a method of inspecting the latent space of stock
market data using genetic programming. Given black box
patterns and 〈stock, day〉 tuples a relation matrix is con-
structed. Applying a low-rank matrix factorization tech-
nique to the relation matrix induces a latent vector space.
By manipulating the latent vector representations of black
box patterns, the geometry of the latent space can be exam-
ined. Genetic programming constructs a tree representation
corresponding to an arbitrary latent vector representation,
allowing us to interpret the result of the inspection.
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•Computing methodologies → Non-negative matrix
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1. MOVITATION
Suppose we have human expert traders trading in a stock

market. It is desirable to specify how they make decision
into set of rules or classifiers to build an automatic trad-
ing system. Furthermore, systematic comparison of multiple
experts can yield new insights. We can perform such com-
parison by inspecting the latent space induced by low-rank
matrix factorization.

2. PROBLEM STATEMENT
A pattern is defined to be a classifier that yields a true/false

result for a given 〈stock, date〉 tuple. A black box pattern
is a pattern that we do not necessarily know the decision
rules it applies. Given multiple black box patterns and their
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Figure 1: NMF is performed on a relation matrix between
patterns and 〈stock, date〉 tuples to induce a latent space.
An arbitrary point in the latent pattern space can form a
new row of V̂ which corresponds to the behavior of the hy-
pothetical pattern. We can recover a tree representation of
the pattern using auxiliary information and GP.

results, we can create a relation matrix whose rows and
columns correspond to patterns and 〈stock, date〉 tuples.

We apply a non-negative matrix factorization (NMF) [2]
to the given relation matrix. This creates two rank-k matri-
ces each corresponding to patterns and 〈stock, date〉 tuples.
A row corresponding to a pattern is understood as a new
vector representation of the pattern. Similarly, a column
corresponding to a 〈stock, date〉 tuple can be seen as a new
vector representation of the tuple. Since these new repre-
sentations are embedded in a k-dimensional vector space,
we can perform usual vector operations on them. This al-
lows us to systematically compare different patterns. For
example, we can easily perform clustering on these new rep-
resentations and find a new pattern that corresponds to the
center of a cluster.

While low-rank matrix factorization techniques allow us to
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Figure 2: The joint plot of reconstruction accuracy on known
and unknown data. High correlation between two results
indicates that a tree that mimics the original behavior tends
to generalize to unseen data as well.

create new representations, an arbitrary latent vector repre-
sentation does not have a correponding decision rule. There-
fore we cannot use such representations directly to predict
the future behavior of said hypothetical patterns. But we
can use auxiliary information to build trees corresponding
to these patterns using genetic programming (GP). An arbi-
trary latent vector is multiplied to 〈stock, date〉 tuple matrix
to create a behavior vector. GP finds a tree that mimics the
behavior of this particular vector.

3. EXPERIMENTAL RESULTS
To test our approach, we created pattern trees using GP

whose objective was to find attractive patterns [1]. Having
such white box patterns allows us the make quantitative
comparison of the results. We used Korean stock market
data from 2013 to 2014 for the experiments.

3.1 Recovering Original Patterns
First, we show that it is possible to create patterns that

mimic the behavior of original patterns and that they gen-
eralize to unseen data. Figure 2 depicts the relationship be-
tween reproducibility and generalizability. Trees that were
able to accurately reproduce the behavior of original trees
were also able to generalize to unseen data. This establishes
that trees recovered by GP models the behavior of black box
patterns. It is noteworthy to point out that newly created
trees were different from the original trees in terms of their
constituent nodes.

3.2 Cluster Centers
To showcase the ability to inspect the latent space, we

study the clustering problem. We performed k-means clus-
tering algorithm to the latent vector representation of pat-
terns. After identifying clusters, each cluster center was
computed by taking the average of patterns in the same
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Figure 3: Comparison of the composition of trees. A tree
consists of different type of nodes and their proportion varies
from tree to tree. Reconstructed average corresponds to the
average proportion of nodes for reconstructed trees of the
same cluster. Center corresponds to a hypothetical pattern
corresponding to the cluster center. Notice that the center is
more similar to the reconstructed average than to a random
pattern tree.

cluster. By applying our approach, tree representations cor-
responding to cluster centers were created.

We compared the proportion of different node types to
confirm that cluster centers are indeed similar to other pat-
terns in the same cluster. The average KL divergence be-
tween reconstruction trees and the cluster center is 0.1575
and the average KL divergence between reconstruction trees
and a random tree is 0.2178. Figure 3 illustrates a typical
case of such a comparison.

4. CONCLUSIONS
We established that it is possible to combine low-rank ma-

trix factorization and genetic programming to inspect the
latent space of stock market data. This approach does not
necessarily have to be limited to stock markets. In princi-
ple, it can be applied to arbitrary relation matrix together
with auxiliary data. We hope to apply this method in other
domains in the future.

5. ACKNOWLEDGMENTS
This work is the result of a commercial project conducted

at Optus Investment Inc. The work was also partly sup-
ported by the Engineering Research Center of Excellence
Program of Korea Ministry of Science, ICT & Future Plan-
ning(MSIP) / National Research Foundation of Korea(NRF)
(Grant NRF-2008-0062609). The ICT at Seoul National
University provided some research facilities for this study.

References

[1] S. Ha and B. R. Moon. Fast Knowledge Discovery in
Time Series with GPGPU on Genetic Programming.
Genetic and Evolutionary Computation Conference,
pages 1159–1166, 2015.

[2] D. D. Lee and H. S. Seung. Algorithms for non-negative
matrix factorization. Advances in Neural Information

Processing Systems 13, pages 556–562. 2001.

64




