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Instructors

• Alberto Moraglio
– Position: Lecturer in Computer Science at the University of Exeter, UK
– Research Area: founder of the Geometric Theory of Evolutionary 

Algorithms, which unifies Evolutionary Algorithms across representations 
and has been used for the principled design of new successful search 
algorithms, including a new form of Genetic Programming based on 
semantics, and for their rigorous theoretical analysis. 

• Krzysztof Krawiec 
– Position: Associate Professor at Poznan University of Technology, Poland
– Research Area: genetic programming and coevolutionary algorithms, with 

applications in program synthesis, modeling, image analysis, and games. 
Within GP: design of effective search operators (particularly crossovers), 
discovery of semantic modularity of programs, and exploitation of program 
execution traces for improving performance of program synthesis. 
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Aims

• Give a comprehensive overview of semantic methods in 
genetic programming 

• Illustrate in an accessible way a formal geometric framework 
for program semantics 

• Analyze rigorously their performance (runtime analysis)

• Present current challenges and trends in semantic GP 

• Outline new emerging approaches 
July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 4

Agenda

1. Introduction to Semantic Genetic Programming

2. Geometric Operators on Semantic Space

3. Approximating Geometric Semantic Genetic Programming

4. Geometric Sematic Genetic Programming

5. Other Developments and Current Research Directions

July 20th, 2016
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I. Introduction to 
Semantic Genetic Programming

July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 6

Genetic Programming

• Generate-and test approach to program synthesis

• Programs represented as symbolic structures (usually abstract syntax trees, ASTs)

• Population-based

• Iterative: start with a population of programs drawn at random, and repeat:

– select the most promising individuals, 

– perturb using mutation and crossover

• … until solution found

• This tutorial: focus on tree-based GP (but usually generalizable to other genres). 

July 20th, 2016
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Motivations for Semantic GP (SGP)

• Traditional GP search operates directly 
on syntax, largely disregarding program 
semantics. 

• Consequences:

– Complex, rugged genotype-phenotype 
mapping

– Low similarity of offspring to parents

– A slight program modification can dramatically 
change its output 

– And conversely: high likelihood of no-effect 
(neutrality)

– Low fitness-distance correlation

July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 8

Questions

• Can we make GP more aware about the effects of program 
execution, i.e., program ‘behavior’?

• Can we design search operators that produce offspring 
program which behave similarly to parent(s)?

• Can we design search operators that are guaranteed to do so?

July 20th, 2016
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Program Semantics

• Program semantics = a formal method of capturing program 
behavior in abstraction from syntax. 

• Common formalisms: denotational semantics, operational 
semantics. 
– Rarely applicable in GP, where program correctness typically 

expressed w.r.t. to fitness cases (tests). 
• Note: semantics (noun) vs. semantic (adj.)

July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 10

GP Semantics

• Problems in GP are typically posed using a set of fitness cases (tests)
• Observation: Program behavior is reflected in the effects of computation, 

i.e., program output. 
• Program semantics in GP: the tuple (vector) of outputs for the training 

fitness cases. Example:

• Consequence: semantic s(p) is a point in an n-dimensional space. 
• A distance between s(p1) and s(p2) reflects semantic similarity of p1 and p2

July 20th, 2016
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Semantic Building Blocks

(McPhee, Ohs, Hutchison 2007/2008) 

• Studied the impact of subtree crossover in terms of semantic building 
blocks. 

• Describe the semantic action of crossover.

• Provide insight into what does (or doesn’t) make crossover effective. 

• Define semantics of subtrees and semantics of contexts, where 
context = a tree with one branch missing.

• Definition of program semantics inspired by Poli's and Page's work on 
sub-machine code GP 

July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 12

Semantic Building Blocks

(McPhee, Ohs, Hutchison 2007/2008) 

• Distribution of context semantics are 
key in the success (or failure) of runs. 

• A very high proportion (typically over 
75%) of crossover events are 
guaranteed to perform no useful 
search in the semantic space. 

July 20th, 2016
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Semantically-Driven Crossover (SDC)
(Beadle and Johnson 2008)

• Program semantics = reduced ordered binary decision diagram
(ROBDDs) 

• Trial-and error wrapper of tree-swapping crossover: 

– Pick a pair of parents and generate from them a potential offspring (candidate 
offspring) 

– Calculate ROBDD semantics of parents and offspring

– Repeat if semantics the same as of any of the parents 

Analogously: Semantically-driven mutation (SDM) 
(Beadle & Johnson 2009)
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Semantic-Aware Crossovers

• Motivation: swap semantically similar subprograms in the parent 
programs,  to ‘smoothen’ the semantic effect of crossover. 

• Semantic-aware crossover (SAX) (Quang et al. 2011)

– Select a pair of subprograms such that their semantics are sufficiently similar (upper 
limit on distance)

• Semantic Similarity-based Crossover (SSX) (Quang et al. 2011)

– As SAX, but imposes also lower limit on distance between the subprograms, to 
prevent producing semantically neutral offspring (see efficiency later in this tutorial). 

• (Quang et al. 2013): Picks the closest semantically different subprogram in 
the other parent. 

• Analogous mutations defined too. 
July 20th, 2016
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Semantic-Aware Initialization

Semantically-driven Initialization (Beadle and Johnson 2009)

• Constructs a population of semantically distinct programs of gradually 
increasing complexity. 

• Start with population P filled with all single-instruction programs

• Repeat until P’s capacity:

– Repeat: 

• Create a random program p by combining a randomly selected non-terminal 
instruction r (of arity k) with k randomly selected programs in P

– Until p has a non-constant semantics that is sufficiently distant from semantics of 
all programs in P

– Add p to P
July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 16

Semantic-Aware Initialization

• Behavioral Initialization (Jackson 2010)

• Start: set P  

• Repeat until P’s capacity:

– Repeat: 

• Create a random program p using conventional methods (e.g., Grow or Full)

– Until the semantic of p is sufficiently distant from semantics of all programs in P

– Add p to P

• Observation: Semantic diversity decreases rapidly with run progress (as 
opposed to syntactic/structural which increases and then levels-off)

July 20th, 2016
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II. Geometric Operators 
on Semantic Space

July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 18
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Balls & Segments
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Squared Balls & Chunky Segments
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Geometric Crossover & Mutation

• Geometric crossover: a recombination operator is a geometric 
crossover under the metric d if all its offspring are in the d-metric 
segment between its parents.

• Geometric mutation: a mutation operator is a r-geometric 
mutation under the metric d if all its offspring are in the d-ball of 
radius r centred in the parent.

21GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Example of Geometric Mutation

000
001

010 011

100 101

111110

Neighbourhood structure naturally associated with the shortest path 
distance.

Traditional one-point mutation is 1-geometric under Hamming 
distance.
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Example of Geometric Crossover

• Geometric crossover: offspring are in a segment 
between parents for some distance.

• The traditional crossover is geometric under the 
Hamming distance.
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H(A,X)  + H(X,B) = H(A,B)
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Significance of Geometric View

• Unification Across Representations

• Simple Landscape for Crossover

• Crossover Principled Design

• Principled Generalisation of Search Algorithms

• General Theory Across Representations

24GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016
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• Semantic search operators: operators that act on 
the syntax of the programs but that guarantee that 
some semantic criterion holds (e.g., semantic 
mutation: offspring are semantically similar to 
parents)

Semantic Operators

25

Semantic 
Mutation

0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1

Induced 
Mutation

Semantics

Semantics

GECCO Tutorial on Semantic Genetic Programming

Fitness as Distance

• Aim: we want to find a function that scores 
perfectly on a given set of input-output examples 
(test cases)

• Error of a program: number of mismatches on the 
test cases

• Fitness as distance: the error of a program can be 
interpreted as the distance of the output vector of 
the program to the target output vector

• Distance functions: Hamming distance for Boolean 
outputs, Euclidean distance for continuous outputs

26GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Semantic Distance & Operators

• The semantic distance between two functions is 
the distance of their output vectors measured 
with the distance function used in the definition of 
the fitness function

• Semantic geometric operators are geometric 
operators defined on the metric space of 
functions endowed with the semantic distance

27GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Semantic Fitness Landscape

• The fitness landscape seen by GP with semantic 
geometric operators is always a cone landscape 
by definition (unimodal with a linear gradient) 
which GP can easily optimise!

28GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016
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III. Approximating 
Geometric Semantic GP

July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 30

Trial-and-Error Geometric Crossover (KLX)

Krawiec and Lichocki Crossover, KLX (Krawiec and Lichocki 2009)

• Goal: Minimize offspring’s total semantic distance from the parents under some 
assumed metric || ||.

• Technical realization: Mate the parents (x,y) repetitively using a ‘regular’ 
crossover operator CX 

• Calculate parent semantics s(p1), s(p2) 

• Repeat:

– Apply CX to (p1,p2) n times, creating a pool of candidates C

– Calculate the semantics s(z) of each candidate z  C

• Return the candidate z that minimises the total distance: 

argmin ||s(z) - s(p1)|| + ||s(z) - s(p2)||

• A form of brood selection
July 20th, 2016
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Trial-and-Error Geometric Crossover (KLX)

Motivation: Given a globally convex 
fitness landscape (one global 
optimum), solutions on a segment 
connecting solutions x and y cannot 
be worse than the worse of them.

July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 32

Promotion of Equidistance 

• All candidate offspring on the segment [s(p1);s(p2)] minimize total distance equally well, no 
matter how different from the parents they are. 

– An offspring z that is a ‘semantic clone’ of p1 (s(z) = s(p1)) also minimises the total 
distance.  

– The likelihood of crossover producing a semantic clone of one of the parents is 
high in GP (see remarks on neutrality later)

• KLX promotes similarity to parents. This may hamper exploration.

• Idea: Extend total distance by a term that promotes balanced distance from both parents 
(KLX+)

argmin ||s(z) - s(p1)|| + ||s(z) - s(p2)|| + | ||s(z) - s(p1)|| - ||s(z) - s(p2)|| |

July 20th, 2016
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Locally Geometric Crossover

(Krawiec & Pawlak 2012)

• Motivations: Finding an ‘almost geometric’ offspring can be difficult for entire 
parent programs,

– … but should be easier for subprograms. 

– This may make sense if ‘geometricity’ can propagate through a tree. 

• The algorithm:

– Find the syntactic common region of the parents (where the trees overlap)

– Select two homogenous nodes (subprograms) p1 and p2 in the common regions

– Calculate the midpoint sm between s(p1) and s(p2) 

– Find two programs p’1 and p’2 in a library that have the closest semantic distance from sm

– Replace p1 and p2 with p’1 and p’2, respectively.

July 20th, 2016 GECCO Tutorial on Semantic Genetic Programming 34July 20th, 2016
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IV. Geometric Semantic GP (GSGP)

July 20th, 2016

Geometric Semantic Operators Construction

• By approximation: 
– Trial & Error is wasteful
– Offspring do not conform exactly to the semantic requirement

• By direct construction: Is it possible to find search operators that 
operate on syntax but that are guaranteed to respect geometric 
semantic criteria by direct construction?

• Due to the complexity of genotype-phenotype map in GP 
(Krawiec & Lichocki 2009) hypothesized that designing a 
crossover operator with such a guarantee is in general 
impossible. A pessimist? No, the established view until then...

36GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016
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Geometric Semantic Crossover 
for Boolean Expressions

37

T1, T2: parent trees
TR: random tree

T3   =

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Theorem

The output vector of the offspring T3 is in the 
Hamming segment between the output 
vectors of its parent  trees T1 and T2 for any 
tree TR

38GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Example: parity problem

• 3-parity problem: we want to find a function 
P(X1,X2,X3) that returns 1 when an odd number 
of input variables is 1, 0 otherwise.

39

0 1 0 1 0 1 1 1O=

Error = HD(Y,O) = 5

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Example: tree crossover

40

T1 =

TR =

T2 =

T3 =

substitution  &
simplification

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016
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Example: output vector crossover

41

• The output vector of TR acts as a crossover mask to 
recombine the output vectors of T1 and T2 to produce the 
output vector T3. 

• This is a geometric crossover on the semantic distance: 
output  vector of T3 is in the Hamming segment between the 
output vectors of T1 and T2.

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Geometric Semantic Crossover 
for Arithmetic Expressions

42

Function co-domain: real
Output vectors: real vectors 

Semantic distance = Euclidean
CR = random real in [0,1]

Semantic distance = Manhattan
CR = random function with co-
domain [0,1] 

T3 =

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Geometric Semantic Crossover for Classifiers

43

Function co-domain: symbol
Output vectors: symbol string

Semantic distance = Hamming
RC = random function with 
boolean co-domain 
(i.e., random condition function 
of the inputs) 

T3  =

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Remark 1: Domain-Specific

• Unlike traditional syntactic operators which 
are of general applicability, semantic 
operators are domain-specific

• But there is a systematic way to derive 
them for any domain

44GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016
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Remark 2: Quick Growth

• Offspring grows in size very quickly, as the 
size of the offspring is larger than the sum 
of the sizes of its parents!

• To keep the size manageable we need to 
simplify the offspring without changing the 
computed function:
– Boolean expressions: Boolean simplification
– Math Formulas: algebraic simplification
– Programs: simplification by formal methods

45GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Remark 3: Syntax Does Not Matter!

• The offspring is defined purely functionally, 
independently from how the parent functions and 
itself are actually represented (e.g., trees)

• The genotype representation does not matter: 
solution can be represented using any genotype 
structure (trees, graphs, sequences)/language 
(Java, Lisp, Prolog) as long as the semantic 
operators can be described in that language

46GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Semantic Mutations

• It is possible to derive geometric semantic 
mutation operators.

• They also have very simple forms for 
Boolean, Arithmetic and Program domains.

47GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

EXPERIMENTS

48GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016
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Boolean Problems

49GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Polynomial Regression Problems

50GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Classification Problems

51GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

DEALING WITH GROWTH

52GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016
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Geometric Semantic Crossover 
for Boolean Expressions (Growth)

53

T1, T2: parent trees
TR: random tree

T3   =

size(T3)  =  4 + 2 * size(TR) + size(T1) + size(T2) 
average size at generation n + 1  >  2 * average size at generation  n

PROBLEM: size grows exponentially in the number of generation!
GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Geometric Semantic Mutation 
for Boolean Expressions (Growth)

54

T:  parent tree
M:  random minterm tree
TM:  mutant tree

size(TM)  =  2 + size(M) + size(T)
average size at generation n + 1  =  constant + average size at generation  n

NO PROBLEM: size grows linearly in the number of generation
GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Three Solutions

1. Algebraic simplification of offspring
‐ Can be computationally expensive
‐ Not all domains can be simplified algebraically
‐ Understandable final solutions

2. Not using crossover
‐ Semantic Hill‐Climber finds optimum efficiently
‐ Linear growth is acceptable

3. Compression of offspring (Vanneschi et al, 2013)
‐ Linear growth even with crossover
‐ Applicable to any domain
‐ Complicated Implementation (pointers structure)
‐ Final solution is black box

GECCO Tutorial on Semantic Genetic Programming 55July 20th, 2016

Compression Method 
(Vanneschi et al, 2013)

‐ Individuals are represented as explicit shared linked data structure to their 
parents, and recursively to all their ancestry.

‐ At each generation, each new offspring of crossover requires only a new 
triplet of references  Linear growth in the number of generations.

GECCO Tutorial on Semantic Genetic Programming 56July 20th, 2016
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Compression Method 

‐ Output vector of offspring can be computed using the explicitly stored output 
vectors of the parent and mask trees. This turns fitness computation from 
exponential in the number of generations to constant time.

GECCO Tutorial on Semantic Genetic Programming 57July 20th, 2016

Compression Method 

‐ Explicit garbage collection of unreferenced past 
individuals in the data structure.

‐ Final solution is extracted from data structure but this 
takes exponentially long in the number of generation.

‐ Extracted solution is queried on non‐training inputs to 
make predictions. This takes exponential time since done 
on extracted solution.

Good idea, but can be improved and beautified!

GECCO Tutorial on Semantic Genetic Programming 58July 20th, 2016

Functional Compression (Moraglio, 2014)

• Individuals are represented directly as 
anonymous Python functions:

P1 = lambda x1, x2, x3: x1 or (x2 and not x3)
P2 = lambda x1, x2, x3: x1 and x2
RF = lambda x1, x2, x3: not (x2 and x3)

GECCO Tutorial on Semantic Genetic Programming 59July 20th, 2016

Functional Compression

• Offspring call parents rather than pointing to them:

OX = lambda x1, x2, x3: 
((P1() and RF()) or (P2() and not RF()) 

• The size of offspring is constant in the number of 
generations

• The function calls structure keeps implicitly trace of all 
ancestry of an individual

GECCO Tutorial on Semantic Genetic Programming 60July 20th, 2016
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Functional Compression

• All individuals are momoized functions: fitness of the 
offspring can be computed directly from stored output 
vectors of parents.

• Garbage collection of unreferenced past functions done 
automatically by the Python compiler.

• Final solution is a Python compiled function. The extracted 
solution is exponentially long.

• But the compiled final solution can be queried on non‐
training inputs to make predictions in linear time.
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GSGP Implementations

• Original Mathematica implementation with algebraic 
simplification: https://github.com/amoraglio/GSGP

• Compression method (>2000 lines in C++): 
http://gsgp.sourceforge.net/

• Functional compression (<100 lines in Python): 
https://github.com/amoraglio/GSGP

• Scala implementation using the ScaPS library: 
http://www.cs.put.poznan.pl/kkrawiec/wiki/?n=Site.Scaps

July 20th, 2016

RUNTIME ANALYSIS OF
MUTATION-BASED GSGP

63GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

• Rigorous analytical formula of the 
expected optimisation time of the search 
algorithm A on the problem class P (on 
the worst instance) for increasing size n 
of the problem

Runtime Analysis

GECCO Tutorial on Semantic Genetic Programming 64July 20th, 2016
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• Algorithm: stochastic hill-climber i.e., flip a bit of the current 
solution and accept new solution if it is better than current

• Problem class: one-max i.e., sum of ones in the bit string to 
maximise; the problem size is the string size

• Expected optimisation time: O(n log n) by coupon collector 
argument

• This result generalises to onemax with an unknown target 
string, i.e., to any cone landscape on binary strings

Runtime Analysis (example)

GECCO Tutorial on Semantic Genetic Programming 65July 20th, 2016

Semantic Mutation 
(syntactic search & semantic effect)

66

Semantic 
Mutation

0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1

Induced 
Mutation

Semantics

Semantics

GECCO Tutorial on Semantic Genetic Programming
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Search Equivalence

67

Semantic GP search at a 
syntax level on any problem

Traditional GA search on 
output vectors on onemax

Semantics

The search outputs a tree (i.e., a function), 
but the runtime analysis can be done on the GA!   

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Forcing Point Mutation (not Bit Flip)

68

X1 X2 X3 Output
0 0 0 0
0 0 1 1
0 1 0 0  1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

X = ((X1 ^ X2) ^ !X3) v X3
M = !X1 ^ X2 ^ !X3
X’ = X v M

GECCO Tutorial on Semantic Genetic Programming
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Issue 1: Exponential Chromosome Size

• Problem size n: number of input variables

• Output vector size N: 2^n 
(exponentially long in the number of variables!)

• (1+1)-EA on OneMax has runtime N log N = n 2^n 
(exponential!)

69GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Issue 2: Exponential Amount of Neutrality

• Training set size t: must be polynomial in n for the 
fitness to be computable in poly time

• The output vectors of size 2^n have only poly(n) 
active bits, all other bits are inactive: sparse 
OneMax with very rare active bits

• Black-box model: we do not know which bits are 
active and which are inactive

• (1+1)-EA takes exponential time to optimise 
sparse OneMax

70GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Solution: Block Mutation

• Use incomplete minterm as a basis for forcing mutation. 
This has the effect of forcing at once blocks of entries to 
the same random value.

71

X1 X2 X3 Output
0 0 0 0  1
0 0 1 1  1
0 1 0 0  1
0 1 1 1  1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

X = ((X1 ^ X2) ^ !X3) v X3
M = !X1
X’ = X v M

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016

Fixed Block Mutation

72

X1 X2 X3 Output
0 0 0 0 
0 0 1 1 
0 1 0 0   0
0 1 1 1   0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Fix Variables  = {X1,X2}
Possible M =
{!X1 ^ !X2, !X1 ^ X2, X1 ^ !X2, X1 ^ X2}

X = ((X1 ^ X2) ^ !X3) v X3
M = !X1 ^ X2
X’ = X ^ !M

GECCO Tutorial on Semantic Genetic ProgrammingJuly 20th, 2016
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Polynomial Runtime with High Probability of 
Success on All Boolean Problems!

73

Proof idea: choose v such that the number of partitions of the 
output vector is polynomial in n (so that the runtime is 
polynomial), and larger enough than the training set, so that 
each training example is in a single block w.h.p. (which 
guarantees that the optimum can be reached).  
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Lesson from Theory

• Rigorous runtime analysis of GSGP on general classes of 
non-toy problems is possible as the landscape is always a 
cone

• There are issues with GSGP which require careful design 
of semantic mutations to obtain efficient search. Theory 
can guide the design of provably good semantic operators 
in terms of runtime

• Runtime analysis of GSGP with several other mutation 
operators for Boolean, arithmetic and classification 
domains have been done producing refined provably good 
semantic search operators
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V. Other developments & 
current research directions
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Semantic Backpropagation 

• Motivation: many instructions used in GP are invertible or partially 
invertible.

• Example: symbolic regression:

– Fully invertible: e.g., addition: y = x + c  x = y - c

– Partially invertible: e.g., square: y = x2  x = sqrt(x)

• The desired output t of a program (target) is known. 

• Given a program and t, this allows deriving desired semantics at any 
point in a program tree. 

July 20th, 2016
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Semantic Backpropagation

SBP can be used to back propagate any semantics.
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Propagation of Desired Semantics: Example 1

• Two fitness cases, 2D semantic space 

• Desired outputs: (0,0)

• Program: cos(sin(x))

• Visualization: 

– semantic distance as a function of inputs (x1, x2) 

– red = smaller semantic distance (greater fitness)

July 20th, 2016
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Propagation of Desired Semantics: Example 2

• Top: desired semantics of cos(#)

– target achieved for x1,x2 =  +k, kZ

• Bottom: desired semantics of cos(sin(#))

– Target cannot be achieved, because 
sin  [-1,1], and thus no x causes 
cos(sin(x)) = 0 
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Semantic Backpropagation

• Desired semantics is a n-tuple of sets of desired outputs, because not 
all instructions are bijective (n = number of tests). Examples:

– D = ({2}, {3}, {2,-4}, {0, 1}) 

– D = ({T}, {F}, {T,F})

• Captures exponentially many GP semantics (with respect to n).

• Special case: non-realizable desired semantics, e.g., D = ({T}, , {T,F})

– Or: non-realizable under assumed constraints (e.g., size of subprogram). 

• Algorithms have to account for that. 

July 20th, 2016
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Operators Based on SBP

• Common part of workflow: 
– Pick a node p’ in a parent p

– Perform semantic backpropagation of desired semantics from the root of p to p’, obtaining 
desired semantics D

– Replace p’ with a (sub)program from a library* that best matches D

• Approximately Geometric Crossover, AGX (Krawiec & Pawlak 2013)

– A crossover operator 

– Uses SBP to match the midpoint on the segment connecting the parents’ semantics

– Starting point of SBP: the midpoint on the segment 

• Random Desired Operator, RDO (Wieloch & Krawiec 2013)

– A mutation operator

– Uses SBP to match the target of the search process 

– Starting point of SBP: the target semantics of the 

July 20th, 2016

(*) Subprogram libraries: 
• Static: Generated prior to run 
• Dynamic: Other programs in 

population 
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AGX: Some Results

(Pawlak, Wieloch, Krawiec, 2014)
July 20th, 2016
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SGP and Neutrality

• Similarly to non-semantic operators, SGP operators can be ineffective (in the semantic sense). 

– The offspring is a semantic clone of a parent. 

– Slows down the search process. 

• Percentage of neutral mutations:

• Can be tackled by testing potential offspring for semantic neutrality. 

Operator Symbolic regression Boolean function 
synthesis

SGX (Moraglio et al.) 0.679 0.719

AGX (Pawlak et al.) 0.131 0.935

LGX (Krawiec et al.) 0.067 0.724

KLX (Krawiec et al.) 0.866 0.895

SAC (Uy et al.) 0.067 0.649

GPX (Koza et al.) 0.103 0.518
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GP as a Test-Based Problem

• Test based problem (S, T, G, Q) (Popovici et al. 2012): 
– S – set of candidate solutions (in GP: programs)

– T – set of tests (in GP: tests, fitness cases)

– G – interaction matrix

– Q – quality measure

• Examples: Games (strategies vs. opponents), control problems (controllers vs. initial 
conditions), machine learning from examples (hypotheses vs. examples)
– Generally: co-optimization and co-search

July 20th, 2016
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Discovery of Underlying Objectives via Clustering
(Krawiec & Liskowski 2013)
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Discovery of Underlying Objectives (and Surrogate 
Fitness) via Matrix Factorization

(Krawiec & Liskowski 2016)

July 20th, 2016
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Behavioral GP

• Generalizes program behavior to the entire course of program execution, not only 
program output 

• Program behavior = list of execution traces

(Krawiec & Swan 2013, Krawiec & O’Reilly 2014)
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Behavioral GP: Example

July 20th, 2016
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Recent Developments

• New approaches based on semantic back propagation 
(Ffrancon & Schoenauer, 2015)

• Lexicase selection (Helmuth et al. 2012) 
– Epsilon-lexicase selection (La Cava et al., GECCO’16)

• Relationship to novelty search (program semantics = 
behavioral descriptor)

July 20th, 2016

Competent Initialization

• Competent Geometric Semantic Genetic Programming (Pawlak & Krawiec 2016)

• Start: P  all terminal instructions

• Repeat until P’s capacity:

– Create a candidate program p by picking a random nonterminal and appending it with randomly 

selected programs from P

– Add p to P if its semantics

• is sufficiently distant from semantics of all programs in P, and

• expands the convex hull of semantics in P

• Observation: Probability of enclosing target semantics in population’s convex hull 

decreases with target distance to the origin of coordinate system
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Bounds on offspring’s fitness in GSGP
(Pawlak 2015)

• Let: 

– LF be a Minkowski metric of order F used by fitness function

– LD be a Minkowski metric or order D used by geometric operators (operator’s metric)

• r-geometric mutation applied to a program p produces an offspring p’ such that

– f(p’) = f(p) ± r∙n1/F – 1/D if F ≤ D

– f(p’) = f(p) ± r otherwise

• The fitness of an offspring resulting from geometric crossover relative to the worse parent’s fitness 

is bounded from above by:

• Practical upshot: use L2!
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Fitness function
L1 L2 L∞

O
pe

ra
to

r’s
 

m
et

ric

L1 n √n 1
L2 1 1 1
L∞ 1 √2 2

• Application to other types of GP
– Geometric Sematic Grammatical Evolution

• Many Real-World Applications (Vanneschi et al, 2013)

• Generalisation Studies
– PAC learning for provably good generalisation of GSGP

• Derivation of semantic operators for more complex domain 
(e.g., recursive programs) on more complex data structures 
(e.g., lists)

Other Lines of Investigation in GSGP
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Thank you!

Questions?

Credits: The authors thank Bartosz Wieloch and Tomasz Pawlak for their 
feedback on the slides of the tutorial. Other credits: Wikipedia
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