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ABSTRACT
Augmented Graph Grammars are a robust rule representa-
tion for rich graph data. In this paper we present our work
on the automatic induction of graph grammars for argument
diagrams via EC. We show that EC outperforms the exist-
ing grammar induction algorithms gSpan and Subdue on
our dataset. We also show that it is possible to augment the
standard EC process to harvest a set of diverse rules which
can be filtered via a post-hoc Chi-Squared analysis.
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1. INTRODUCTION
Complex graph structures have become increasingly im-

portant to data analysis. There has been increased inter-
est in analyzing social networks, chemical structures, user-
system interaction logs, and other complex relational infor-
mation. One of the primary goals of graph mining is to
identify key substructures that signal important errors or
chemical properties, or which can be used to classify graphs
as indicative of good or poor performance. These substruc-
tures make it possible to abstract the graph structures and
can act as induced features for secondary analysis.

Augmented Graph Grammars (AGG) are a robust for-
malism for rules about graphs [3]. They are an analogue to
string grammars that allows for graph structures, complex
element types and constraints and heterogeneous rules that
incorporate rich node and arc content. AGGs are well-suited
to analyzing rich semi-structured data such as Argument
Diagrams which are a graph-based representation for argu-
mentation [4]. Argument diagrams reify key components of
arguments such as hypotheses, claims, and supporting evi-
dence with textual content. Argument diagrams have grown
increasingly popular in education, computer-supported col-
laborative work, and other domains.
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Existing graph-grammar induction algorithms are limited
in scope and are ill-suited to rich graphs. In this paper, we
discuss our ongoing work on the application of Evolution-
ary Computation (EC) to grammar induction. EC-based
search can examine a wider range of the search space and
identify higher-performing rules than existing methods. We
augmented the existing EC paradigm to harvest diverse rules
over the course of the run and used Chi-Squared (χ2) filter-
ing to narrow the final population to a novel subset. We
then compared the performance of the EC-generated rules
to the existing gSpan [6] and Subdue [2] algorithms.

2. EXPERIMENT
In this work we harnessed the flexibility of EC to in-

duce AGGs directly from an existing dataset of 104 student-
produced argument diagrams [4]. This dataset was collected
in a prior study on argument analysis and was graded for
argument quality on a scale of -5 to 5. Our long-term goal is
to induce fully-augmented hierarchical grammars that can
represent classes of argument diagrams and can deal with
the textual content. For the present work, however, we re-
stricted the search to single rules that relied on ground node
and arc types, avoiding both hierarchical variables and nega-
tion. This ensures that the EC system will examine a simi-
lar search space to the baseline algorithms. We did however
permit the EC algorithm to induce disjoint rules, rules that
include disconnected subgraphs, which are beyond the scope
of our baseline algorithms.

For each experimental run we used a population of 100
independent rules and ran for 1,000 generations. In each
generation, we cloned the top 10 individuals directly into
the next generation under elitism, and we selected 10 indi-
viduals for point mutation and copied the results over. The
remaining members of the new population were produced
via crossover. Our fitness function was based upon a non-
parametric correlation between the frequency with a rule
matched the target graph, and the expert-assigned score.
We used this same metric in our prior work on the use of
argument diagrams to predict essay grades [4]. We used
basic point mutation that could add, delete or modify indi-
vidual elements and connecting arcs. In order to preserve
stability we used a matrix crossover algorithm based upon
the work of [5]. On each generation we harvested all rules
where ρ ≥ 0.18 and preserved them for later analysis.

Our baseline grammar-induction algorithms were gSpan
[6] and Subdue [2]. GSpan is a frequent subgraph algo-
rithm based upon heuristic graph walks. Subdue executes a
compression-based beam search for good subgraphs. When
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using the former we exported all graphs with frequency ≥
1% and ρ ≥ 0.18. For the latter we used the algorithm in su-
pervised learning mode and treated all graphs with a score
≥ 0 as positive examples and the remainder as negative.
We then collected the best 12 features with ρ ≥ 0.18. Prior
experiments have shown that more than additional features
fell below the threshold.

We filtered each set of candidate rules using a χ2 test
of independence. This is a statistical test that measures
divergence from the expected distribution assuming that one
feature occurs independently of the others [1]. A p-value
≤ 0.05 for the χ2 test led us to reject the null hypothesis
that two variables are wholly independent and conclude that
the variables are significantly correlated in our dataset. In
order to construct the contingency table for this analysis we
treated each rule as a categorical test and collected a binary
vector over the population indicating whether or not a rule
mapped to any subset of a given diagram.

We then performed a greedy filtering process. The rules
were ranked by ρ, and each rule was compared to its better-
correlated peers. For any pair of rules where the χ2 cor-
relation was statistically-significant (p − value ≤ 0.05), we
discarded the lower-ranking member. While this process dis-
carded some promising candidates it allowed us to rapidly
winnow the data down to a (more) tractable subset.

3. RESULTS
Table 1 shows our overall experimental results. The“Count”

column indicates the number of rules that were initially gen-
erated by each of the algorithms, and the number of inde-
pendent rules after filtering. The“ρ value”columns show the
highest and lowest ρ values for the best five rules from each
algorithm. As Table 1 illustrates, the EC algorithm gener-
ated the largest number of candidate rules, but the number
dropped from 82 to 6 after filtering. Subdue and gSpan, by
contrast, generated far smaller sets of rules (no more than
12) and dropped to no more than 3 after the χ2 filtering.

As the table illustrates, EC produced the best-correlated
rules both before and after filtering. Prior to the filtering
the top 5 rules were all close analogues to one another and
had quite similar performance. After filtering, however, the
low performance dropped substantially as the rules varied.
Thus it is clear that the filtering was successful in closely-
matching cases for all three algorithms.

The best of the EC-induced rules is shown in Figure 1.
It matches a substructure containing two independent cita-
tions that jointly support a shared claim node alongside a

Table 1: Number of unique rules generated by the
induction algorithms and the Spearman’s correla-
tion range of top five best rules before and after χ2

filtering.

Ruleset Count
ρ value

Best Worst

EC
Raw 82 0.37 0.36
Trimmed 6 0.37 0.19

Subdue
Raw 11 0.28 0.22
Trimmed 3 0.28 0.18

gSpan
Raw 12 0.35 0.26
Trimmed 3 0.35 0.23

k0

k1

h

c0 c1

s0 s1(EC)


k ∗ .T ype = “claim′′

h.Type = “hypothesis′′

c ∗ .T ype = “citation′′

s ∗ .T ype = “support′′



Figure 1: Best rules induced by EC

separate hypothesis and claim. Because the rules do not in-
clude explicit negation there may be additional arcs between
the nodes in the matched graphs other than s0 and s1. Con-
ceptually this structure matches cases where an arguer has
identified multiple sources of support for their shared claim
and where that support structure is a subset of a larger argu-
ment with at least one hypothesis and an additional claim.
In the context of our study assignment this would indicate
that the students sought to validate their claims with mul-
tiple pieces of evidence rather than using a single source as
is often the case.

4. CONCLUSIONS
In this work, we showed that it is possible to apply Evolu-

tionary Computation to induce Augmented Graph Gram-
mars for rich graphs such as Argument Diagrams. Our
EC algorithm is able to induce higher-performing rules than
Subdue or gSpan. We also found that EC is able to induce
disjoint rules, a key limitation of existing algorithms, and
that those rules outperform the best connected examples.
We also show that it is possible to augment the existing EC
paradigm by harvesting rules and filtering them using a χ2

test of independence to yield a heterogeneous subset.
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