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1. INTRODUCTION
Learning Classifier System (LCS) [2] is an evolutionary

machine learning method that is constituted by reinforce-
ment learning and genetic algorithm. As an important fea-
ture of LCS, LCS can acquire generalized rules that match
multiple states using # symbol. Among LCSs, Accuracy-
based LCS (XCS) [4] can acquire“accurate”generalized rules
by reducing the difference between the predicted reward and
the acquired reward, but XCS is hard to correctly estimate
such difference in noisy environments. To address this is-
sue, our previous research proposed XCS-SAC (XCS with
Self-adaptive Accuracy Criterion) [3] for noisy environments.
Since the estimated standard deviation of the rewards of the
inaccurate rules is larger than that of the accurate ones, the
fitness of rules in XCS-SAC is calculated according to the
estimated standard deviation of the rewards.
However, XCS-SAC needs to wait until convergence of the

estimated standard deviation of all state-action pairs. This
paper pays attention that the average value of rewards is
distributed around a true value. To overcome this problem,
this paper proposes XCS without Convergence of Reward
Estimation (XCS-CRE) that can determine the accuracy of
rules according to the distribution range of the average value
of rewards of the matched state-action pair.
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Figure 1: Learning mechanism of XCS-SAC

2. XCS-SAC
The classifiers of XCS-SAC are composed of if-then rule

and some evaluation values such as error (ϵ) and the accu-
racy criterion ϵ0. These values are updated until the sample
standard deviation S(s, a) for all possible state-action pairs
are converged. The S(s, a) is called the variance table which
is updated while learning. Since the different values of the
rewards are received in noisy environments even when the
same action is executed in a state, the estimated standard
deviation is also different from the convergent value in some
cases especially when the number of data is small. After the
convergence of values in the variance table, the estimated
standard deviation values are fixed and the ϵ0 of the classi-
fier are determined as the weighted average of all matched
state-action pairs. If the ϵ0 is less than the estimated stan-
dard deviation of acquired rewards (ϵ), XCS-SAC regards
that the classifier is accurate.

The algorithm of XCS-SAC is summarized as follows: (1)
the match set [M ] is created from the classifiers which con-
dition part matches the input in population [P ]; (2) the pre-
diction array is calculated by the prediction of the matched
classifiers and their actions; (3) the action set [A] is created
from the classifiers that have the same action in [M ]; (4)
the action is executed and the reward P is received from the
environment; (5) after receiving the reward, the reinforce-
ment component is executed and the evolution component
is executed at the certain time.
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Figure 2: Subsumption condition of XCS-CRE

3. XCS-CRE
Although the update mechanism of the accuracy criterion

ϵ0 and the error ϵ of XCS-CRE are the same as those of
XCS-SAC, XCS-CRE does not have the convergence con-
dition on the standard deviation of rewards like XCS-SAC
because it can learn accurate generalized classifiers without
waiting their convergence.For this issue, the new accuracy
determination condition is added in XCS-SAC as eq. (1)
> eq. (2), where µ(s, a) indicates the averaged reward of
executing the action a in the state s. This inequality means
that the reward of the accurate classifier fluctuates in a nar-
row range. In static noisy environment, the averaged reward
is close to the true value of the reward.

min{min{|µ(s, a)− µ(s, a′)|, {a, a′} ∈ action}, s ∈ state}
(1)

max{|µ(s, a)− µ(s′, a)|, {(s, a), (s′, a)} matched cl} (2)

In order to understand the above new condition, let’s fo-
cus on the classifier {C:0##0, A:01}, where the condition is
represented 0##0 while the action is represented by 01. As
shown in the left side of Figure 2, XCS-CRE starts to cal-
culate the minimum difference among the averaged rewards
(µ(s, a)) of the different actions in all states, (e.g., 318 in
state 0000, 388 in state 0001, and 580 in state 1111) and
selects the minimum one (i.e., 318) among the above values
(i.e., 318, 388, ..., 580). As shown in the right side of Figure
2, on the other hand, XCS-CRE calculates the maximum
difference among the averaged rewards (µ(s, a)) of the dif-
ferent states (i.e., 0000, 0010, 0100, 0110), matched to the
condition of the classifier (i.e., 0##0), in the same action
(i.e., 01), and selects the maximum one (i.e., 40) among the
above values (i.e., 1, 11, 13, 27, 38, 40). Since 318 > 40, the
classifier {C:0##0, A:01} can be regarded as the accurate
one.

4. EXPERIMENT

4.1 Noisy multiplexer problem
To investigate the effectiveness of XCS-CRE, this paper

compares the results of XCS, XCS-SAC, and XCS-CRE in
6-Multiplexer problem.In this problem, the first 2 bit of the
input data converts to the decimal number d, the 2 + d-th
bit is the correct answer. XCSs are expected to acquire the
accurate generalized classifiers replacing the bits (which do
not affect the answer) with #. The reward is set 1000 for
the correct answer and 0 for the wrong answer. The noise
that follows a normal distribution of mean 0 and variance
3002 is added to all rewards.
In the experiment, 100000 iterations is conducted in one

trial and the 50 trials are conducted with the different ran-
dom seeds. The following evaluation criteria are employed:

1) Correct rate, where the higher correct rate is better
than lower one; and 2) Population size, which evaluates
the number of the classifiers in the [P], and the smaller pop-
ulation size is better than larger one because the necessary
memory size becomes small. The parameters of XCSs are
the mostly standard ones [1].

4.2 Results
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Figure 3: Correct rate and population size

Figure 3 shows the result, the horizon axis represents the
iteration, the left vertical axis represents correct rate, and
the right vertical axis represents population size. As shown
in this figure, the correct rate of XCS, XCS-SAC and XCS-
CRE reached 100%. The population size of XCS becomes
approximately 110, while that of XCS-SAC and XCS-CRE
become approximately 30 which is smaller than 110.This
result also suggests that the convergence time to XCS-CRE
is faster than that of XCS-SAC.

5. CONCLUSION
This paper proposed XCS-CRE which can acquire accu-

rate generalized classifiers in noise environments without
waiting for the convergence of the averaged rewards of all
state-action pairs. The experimental result suggested that
the correct rate of XCS-CRE converges 100%, while its pop-
ulation size of XCS-CRE quickly recuses in comparison with
other LCSs.

The following research much be done in the near future:
(1) the environment changes in the middle of learning; (2)
environment where the average of rewards depend on the
intensity of noise.
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