
Solving Complex Problems with 
Coevolutionary Algorithms

Krzysztof Krawiec1, Malcolm Heywood2 
1Poznan University of Technology, Poland

2Dalhousie University, Canada

krawiec@cs.put.poznan.pl, mheywood@cs.dal.ca

http://www.sigevo.org/gecco-2016/
Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for third-party components of this work must be honored. For all other 
uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
GECCO'16 Companion, July 20-24, 2016, Denver, CO, USA 
ACM 978-1-4503-4323-7/16/07. 
http://dx.doi.org/10.1145/2908961.2926989  

Instructors
  Krzysztof Krawiec is an Associate Professor in the Laboratory of Intelligent 

Decision Support Systems at Poznan University of Technology, Poznań, 
Poland. His primary research areas are genetic programming and 
coevolutionary algorithms, with applications in program synthesis, modeling, 
image analysis, and games. Dr. Krawiec co­chaired the European Conference 
on Genetic Programming in 2013 and 2014, the ACM GECCO GP track in 
2015 and 2016, and is an associate editor of Genetic Programming and 
Evolvable Machines journal. His work in the area of CoEAs includes problem 
decomposition using cooperative coevolution, learning strategies for Othello, 
Go, and other games using �competetive CoEAs, and discovery of underlying 
objectives in test-based problems.

  Malcolm Heywood is a Professor of Computer Science at Dalhousie 
University, Canada. His has a particular interest in scaling up the tasks that 
genetic programming (GP) can potentially be applied to. His current research 
is attempting the appraise the utility of coevolutionary methods under non-
stationary environments as encountered in streaming data applications, and 
coevolving agents for single and multi-agent reinforcement learning tasks. In 
the latter case the goal is to coevolve behaviours for playing soccer under the 
RoboSoccer environment (a test bed for multi-agent reinforcement learning). 
Dr. Heywood is a member of the editorial board for Genetic Programming and 
Evolvable Machines (Springer). He was a track co-chair for the GECCO GP 
track in 2014 and a co-chair for European Conference on Genetic 
Programming in 2015 and 2016.

July 2016 Solving complex problems with 
coevolutionary algorithms 2

Solving Complex Problems with 
Coevolutionary Algorithms 3

Agenda
  I. Introduction
  II. Competitive coevolution
  Core concepts
  One-population competitive coevolution
  Two-population competitive coevolution

  Advanced topics

  III. Cooperative coevolution
  Core concepts
  Case study: Symbiotic bid-based GP

  Case study: SBB under non-stationary streams
  Case study: Diversity maintenance and policy reuse

  IV. Closing remarks

July 2016 July 2016 Solving complex problems with 
coevolutionary algorithms 4

I. Introduction
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Canonical assumptions made by EA

 An absolute measure of fitness is available and computable.

  ‘Complete’ definition of task / environment

 Solutions are (more or less) monolithic.

  Each individual encodes a complete solution to a problem 

  Tasks are not explicitly decomposed. 

 Coevolutionary algorithms (CoEA) revise these assumptions. 
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What is a coevolutionary algorithm?

 A variant of EC where fitness function mandates the 
individuals to engage into direct interactions.

 Fitness cannot be computed for isolated individuals.

 Formally: 

 Evolutionary algorithm (EA): f: X  E 

 Coevolutionary algorithm (CoEA): f: X1×X2×...×Xn  E, 
where E is an evaluation codomain (typically R)

 Interaction = a tuple from X1×X2×...×Xn 
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EA vs. CoEA

EA
Absolute measure of fitness f available 

and computable for each individual 
separately.

CoEA
Search gradient can be obtained only 
by letting individuals interact. Exact 
fitness may be not computable. 
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Consequences

 Individuals' performances depend on each other (fitness is contextual) 

 The solution of a problem can be: 

 An element of Xi (as in an EA)

 Typical for competitive CoEA (with exceptions)

 Key questions: What to evolve against? Who is the best teacher?

 A combination of elements from Xis

 Typical for cooperative CoEA (with exceptions)

 Key questions: How to encourage cooperation? Divide and conquer.

 Pertains to so-called solution concepts, see later

 Remember: individual ≠ solution 
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What is it good for?

  CoEAs lend themselves conveniently to a few classes of problems of 
theoretical and practical interest. 

  Competitive CoEAs: test-based problems, games, interactive domains

 Example: individual=game strategy, fitness=expected game 
outcome 

  Cooperative CoEAs: problem decomposition, modularity, credit assignment

 Example: individual=a rule in a classifier, fitness=overall 
accuracy of the classifier

  Class of problems: co-search, co-optimization, generalised optimisation 
(Wolpert and Macready 2005)
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Other characteristics of CoEAs

 Operate under incomplete information (uncertainty)

  Focus on evaluation and interaction schemes (less so on 
search operators)

  Individuals often maintained in several populations.

 Biological analogs:

 No global, static fitness function in Nature

 Nature does not optimize for anything; EAs do. 

  Individual's fitness results from its interactions with environment, 
including other individuals of the same species
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Measuring progress: 
Subjective vs. objective fitness

 Subjective fitness: f calculated using the currently 
available elements of Xis (a sample)

 Typically those available in the current population, 

 Example: average game outcome against the opponents from 
the current population

 Objective fitness: f calculated with the elements chosen 
in a principled manner. 
Examples:

 Average game outcome against all possible opponents 

 Game outcome against a human-crafted opponent.

II.1. Competitive coevolution
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Class of problems tackled by competitive 
CoEAs

  Interactive domains
  Sets of individuals (entities*)

  Interaction function (payoff function) 
g: X1×X2×...×Xn  R

  When n=2, the second argument is 
an opponent.

  Note: g alone does not define the 
search goal.  

  What is the solution to the 
problem? 

(*) Sometimes, but not always, identified with 
candidate solutions

  Solution concept (cf. Ficici 2004, 
Popovici et al. 2012): 

  Criterion specifying whether a 
potential solution 

  is better than another solution 
(in co-optimization),

  is solution to a problem (in co-
search)

  Most popular SC: Maximization of 
Expected Utility (MEU): 
fo(x) =  E[ g(x1,x2) ]

  A.k.a. generalization performance 
(Chong et al. 2008)

  Competitive CoEAs realize 
knowledge-free approach to 
solving problems posed in 
interactive domains. 
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Subjective fitness

  Challenge: calculation of fo is often computationally infeasible.
  Example: Othello: game tree complexity 1058

  Number of unique strategies typically much higher, due to many-to-one genotype-
phenotype mapping 

  Solutions:
  1. Fix the set of opponents. 

  For instance, well-performing known opponents (e.g., handcrafted by humans)

  Strong bias, limited generalization

  2. Draw the opponents at random

  What is the 'right' distribution of opponents?

  Drawing uniformly in the genotypic space does not result in desired (e.g., uniform) 
distribution of skills/capabililties 

  3. Competitive coevolution 
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Example: Game of Othello

  Two-player, perfect-information, turn-
based, zero-sum game

  Still unsolved
  Sudden changes of game state 

possible
  Strategy = individual (candidate 

solution)
  Common competitive CoEA 

approach: 
  Evolve board evaluation function b()
  Use it in one-ply search: simulate all 

legal single moves from the current 
state and choose the one that 
maximizes b.    

  Popular representations of board 
evaluation functions: weighted piece 
counter and n-tuples

July 2016 Solving complex problems with 
coevolutionary algorithms 16

Weighted Piece Counter (WPC)

  Single linear neuron with 64 
weights: b(s) =  Σi wisi 

  Top: handcrafted Othello WPC 
board evaluation function 
(standard WPC heuristics) 

  Bottom: a function evolved using 
one-population competitive 
CoEA, hybridized with TDL 
(Szubert, Jaśkowski, Krawiec 
2009)
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N-tuple networks
(Lucas 1997)

  Combinatorial network with lookup 
tables holding all combinations for 
(usually randomly selected) 
subsets of (usually adjacent) 
board locations 

  3n weights for a single n-tuple for 
tri-state boards (for Othello: empty, 
black, white)

  Top: Exemplary 3-tuple and 4-
tuple for base-3 numbers: 

  2*32 + 0*31 + 1*30 = 19 

  1*33 + 0*32 + 2*31 + 1*30 = 34

  Bottom: Examples of CTDL co-
evolved n-tuples (Szubert, 
Jaśkowski, Krawiec, 2013)

July 2016 Solving complex problems with 
coevolutionary algorithms 18

One-population competitive CoEA

  The simplest setup to approach MEU problems.

  Applicable when X1 = X2 = ... = Xn = X 

  E.g. symmetric games

  Usually: fs(x) = Σx’∈X’ g(x,x’), where X’ is some sample of X drawn from current population P

  An interaction = single game (symmetric games) or two games (asymmetric 
games)

  Interaction schemes:

  Round-robin: n(n-1)/2 interactions (X’ = P \ {x})

  k-random opponents: kn interactions (|X’| = k)

  Single-elimination tournament (SET): n interactions

  Pair the individuals at random. Winners pass to the next stage. Individual's fitness is  the stage 
of tournament it reached. 
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Highlights of one-pop competitive CoEAs

  Iterated Prisoner’s Dilemma, IPD (Axelrod 1987)
 Backgammon (Pollack & Blair 1998)
 Checkers (Samuel 1959, Fogel 2002)
 NERO, Blackjack, Pong, Small-board GO, Tetris, …

July 2016 Solving complex problems with 
coevolutionary algorithms 20

Fitnessless Coevolution
(Jaśkowski, Krawiec, Wieloch 2008)

 More specifically: fitnessless selection 
 Pick k individuals at random

 Run a SET on them 

 The winner of SET is selected

 Does not rely on subjective fitness. 
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Fitnessless Coevolution for Ant Wars
(Jaśkowski, Krawiec, Wieloch 2008)

  Fitnessless Coevolution evolved the winner of the Ant Wars GECCO'08 contest

  Two-player partially observable game

  Agents (ants) see only a 5x5 fragment of the toroidal 11x11 board

  The goal: collect more food pellets than the opponent (pellet locations are random).

  Strategy representation: stateful GP program (maintains intra-game memory)
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Example: Ant Wars

Complex behaviors emerged: systematic search, rational 
choice of trajectories, …
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Example: Ant Wars

… memorizing locations of food pellets, opponent avoidance, 
pseudo-suicide, …

 Online demo: http://www.cs.put.poznan.pl/kkrawiec/antwars/ 
July 2016 Solving complex problems with 
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Digression: Importance of transitivity

  Fitnessless Coevolution is not equivalent to fitness-driven one-population 
coevolution if there are cycles in interactions in between individuals  (Jaśkowski, 
Krawiec, Wieloch 2008)

  Example: Tic-tac-toe strategies A, B, C: place a mark in the numbered locations 
if free,  otherwise in the location marked by asterisk (*)

  A beats B, and B beats C. But A does not beat C, just the opposite. 
  Tic-tac-toe is intransitive. 
  No scalar fitness function can model this (can realize only complete orders). 
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The philosophy behind one-pop 
competitive CoEA

  Individuals create search 
gradient for each other.

  A form of (population-level) self-
learning 

  Can be seen as an analog to 
self-play in RL (individual-level)

  Q: Is this sufficient to 
guarantee progress?

  A: No. 
Coevolutionary pathologies are 
lurking out there. 
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Coevolutionary pathologies

  Cycling: evolution keeps rediscovering the same solutions 

  Particularly likely if game is intransitive. 

  Disengagement: opponents are either trivial or way too difficult to beat

  Overspecialization (focusing): mastering the skills of beating some 
opponents while neglecting the others.  

  Forgetting: opponents defeated in the past turn out to be difficult again. 

  See review and rigorous analysis in (Ficici 2004)

  Main causes:

  No access to objective fitness 

  Population responsible for both search and providing search gradient for itself
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Coevolutionary archive competitive 
CoEAs (one-population)

Archive = a container storing well-
performing individuals, maintained 
alongside population. 

  Provides long-term memory 
  Builds search gradient 
  Prevents some pathologies
  Maintains diversity and progress

Archives help maintaining historic 
progress (Miconi 2009) 

  Not necessarily progress in the 
global, objective sense.

How it works:
  Search algorithm submits some 

individuals to the archive
  Archive accepts some of them 
  Individuals in population interact with 

peers and archival individuals 
  Outcomes of interactions augment 

the fitness 
  Simplest archive: best-so-far 

individual
  Hall of fame (Rosin & Belew, 1997) 

  Stores all best-of-generation individuals 
found so far 

  Population members play against each 
other and against the opponents from 
HoF

II.2. Two-population competitive 
CoEAs
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Two-population competitive CoEAs

  One-pop competitive CoEA: Population responsible for both 
searching for good solutions and providing search gradient for itself. 

 Why not separate these functions?

  Two-pop competitive CoEAs: Maintain separate populations of:

  candidate solutions S ⊂ X1 – intended to solve the problem 

  tests T ⊂ X2 – provide only search gradient for the individuals in S 

  Applicable in symmetric (X1 = X2) and asymmetric setting (X1 ≠ X2) 
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Two-population competitive CoEA

  Typical interaction scheme: all-to-all
  S and T co-evolve in parallel 
  No transfer of individuals between S and T
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What to reward the tests for?

  Individuals in S should maximize EU. How to reward the tests?

  Maximize EU as well?

  Pathologies likely

  Tests should be neither too easy nor to hard for the individuals in S

  Common reward schemes:

  Distinctions: reward a test for every pair of solutions it distinguishes

  Informativeness: reward a test for unique partitioning of S

  Hybrids (e.g., with EU)
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Test-based problems

  With two populations, the tests can be conceptually different from 
candidate solutions. 
  Formally: Test-based problem (S, T, G, Q) (Popovici et al., 2012)

  Examples:
  Asymmetric games (strategies vs. opponents)

  E.g., tic-tac-toe, Othello, 
  Control problems (controllers vs. initial conditions)

  Pole balancing, car control, etc. 
  Learning from examples (hypotheses vs. examples)
  Program synthesis  with GP (programs vs. tests)
  In general: co-optimization and co-search
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Pareto-coevolution
(Ficici and Pollack, 2001; Noble and Watson, 2001)

  Each test considered as a separate objective.
  Transforms a test-based problem into multiobjective optimization 
problem (or many-objective one).  
  Example: 

 s1 solves both tests t1 and t2
 s2 solves only t2
 s3 solves only t1

  Problem: large number of tests (and thus objectives).
  Sparse dominance relation. 
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Coevolutionary archives 
(two-pop)

  General scheme: individuals are submitted to archive and get 
accepted or rejected by it.
  Separate archives for solutions and tests
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Coevolutionary archive algorithms 
(two-pop)

  Iterated Pareto-Coevolutionary Archive, IPCA (de Jong 2004)
  A new solution s  is added to Sar if no s’ ∈ Sar dominates s. In that case:

  All s” ∈ Sar dominated by s are removed from Sar

  The test t that made it possible for s to be added to Sar is added to Tar 

  Guarantees monotonous progress 
  Unlimited-size archive 
  Tests provide for distinctions between individuals

  Layered Pareto-Coevolutionary Algorithm, LAPCA (de Jong 2004)
  Merges the current archive and the submitted elements and builds a Pareto ranking of 

solutions
  The first k layers of the ranking remain in Sar, the remaining ones are discarded
  Tar keeps the tests that support Pareto dominance in Sar

  No guarantee of monotonous progress, but (somehow) controllable size

  IPCA and LAPCA perform well only on small, usually artificial problems. 
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Coevolutionary archives 

  Maintaining archives can be costly 
 Many interactions required to check if a solution should be added

  Mitigation: MaxSolve (De Jong 2005), for MEU solution concept

  Keep in Sar up to n solutions that solve the most tests (at least one), and 
in Tar all tests that a solved by at least one s ∈ Sar 

  [Behaviorally] duplicate tests are discarded

 Monotonic: will not miss solutions that increase the number of solved 
tests

  When overhead of maintaining an archive counted in, non-
archived algorithms can be equally efficient.

  Other types of archives (Jaśkowski & Krawiec 2010)

July 2016
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Related results and concepts

  Ideal evaluation and complete evaluation set 
(de Jong and Pollack 2004)

 The set of tests that preserves dominance relation between the 
solutions in S
 Determining the minimal complete evaluation set is NP hard 
(Jaśkowski & Krawiec 2011)
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Genetic Programming: Program 
synthesis as a test-based problem

  Genetic programming
  S = population of candidate 
programs
  T = population of tests (fitness 
cases)

  Simple variant: Pairwise Comparison 
of Hypotheses (Krawiec 2001) 

  Dominance-based selection of 
hypotheses
  Dominance-based maintenance of 
best solutions
  Dominance-based selection of the 
best solutions (algorithm outcome)

  Applied to handwritten character 
recognition

  See also: (Arcuri & Yao 2014)

II.3. Advanced topics in 
competitive coevolution

Hybridization, coordinate systems, 
coevolutionary shaping

July 2016 39Solving complex problems with 
coevolutionary algorithms July 2016 Solving complex problems with 

coevolutionary algorithms 40

Coordinate systems

 An interaction matrix defines a dominance relation
 Dominance relation defines a partial order in the set of 
individuals ⇒ partially ordered set, poset

 A poset can be 'stretched' along multiple dimensions 
(underlying dimensions). 
 Dimensions form a coordinate system (Bucci et al. 2004): 

 Axis = ordered list of tests
 (alternative formulations exist)
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Coordinate system: an example
•  The game: Nim-1-3

–  Players in turns take sticks from two piles of size 1 and 3.
•  Total of 144 strategies, 

–  but only 6 behaviorally unique for the first player (S), and 9 for the 
second player (T).

•  Minimal coordinate system
–  Some tests not needed to reproduce the dominance relation 

•  Game dimension: 2
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Coordinate systems: some results

  Benefits:

  Can accelerate convergence and/or guarantee progress: Dimension 
Extraction Coevolutionary Algorithm, DECA (de Jong and Bucci 2006)

  Reveal the internal structure of a problem and relate to problem difficulty

  Hypothesis: dimensionality of coordinate system is a yardstick of 
problem difficulty

  The set of all tests forms the complete evaluation set (de Jong & 
Pollack 2004)

  Game dimension = width of the poset (Jaśkowski & Krawiec 2011)

  The number of underlying objectives for an abstract problem seems 
to be limited by a logarithm of the number of tests.
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Problems with exact coordinate systems

  Problem dimension may be 
underestimated when only 
samples of S and T are used.

  Finding minimal CS for a 
problem is NP-hard (Jaśkowski 
& Krawiec 2011)

  Heuristics exist but 
overestimate the number of 
dimensions

  Nontrivial test-based problems 
have very high dimensionality 

  Q: Can we efficiently 
‘approximate’ the underlying 
dimensions?
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Heuristic discovery of underlying objectives

  Idea: 

 Construct efficiently approximate underlying objectives from the 
information available at the given stage of search process 

 Use the derived objectives in multiobjective EA setting

  Derived objectives rather than underlying objectives

 Approximate (do not reproduce the original dominance) 

 Transient (depend on the current populations) 

  Technical means: clustering of tests 
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Heuristic discovery of underlying objectives
(Krawiec & Liskowski 2015, Liskowski & Krawiec 2016)

•  ‘Batch evaluation’ of 
population (as in implicit 
fitness sharing)

•  Example: four candidates:
S = {a,b,c,d}, five tests:
T = {t1,t2,t3,t4,t5} 

•  No guarantee to reproduce 
the original dominance 
relation.

•  ‘False positive’ dominance 
possible.   

•  ‘False negative’ – 
impossible.    
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Heuristic discovery of underlying objectives

July 2016
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Heuristic discovery of underlying objectives

 Results for 9-choice iterated prisoner’s dilemma, IPD (MEU)
 k-MEANS: k objectives derived using k-means clustering algorithm

 k-RAND: objectives built by random partitioning of tests into k objectives

 Applied also in non-coevolutionary setting with GP, with k adjusted automatically 
(Krawiec & Liskowski 2015). Better than GP and RAND, comparable to IFS.  

July 2016
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Heuristic discovery of underlying objectives
(Liskowski & Krawiec 2016) 

July 2016
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Hybridization
  CoEAs are generate-and-test techniques (like EA)

  In contrast, gradient-based methods provide ‘directed’ corrections/updates of 
parameters 

  Can be more efficient in high-dimensional problems 
  Complementary: CoEAs learn slower than TDL but eventually outperform it (Lucas & 

Runarsson 2006)

  Coevolutionary Temporal Difference Learning, CTDL (Krawiec & Szubert 2011, 
Szubert et al. 2013)

  Interleave one-population coevolution (with round-robin) with TD(0) 
  CoEA picks the ‘right’ opponents, TDL tunes the solutions in a self-play mode
  CoEA modifies the topology of n-tuples. TDL only affects the weights. 

  A form of memetic algorithm (genetic local search) (Moscato 1989): individuals’ 
interactions with the environment influence their genotypes (Lamarckian 
evolution). 

  Related to: adversary reinforcement learning 
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Hybridization

 Othello, n-tuples (Szubert, Jaśkowski, 
Krawiec 2013)

 Compared also to ETDL= EA+TD(0) 

 Othello Evaluation Function League

 http://algoval.essex.ac.uk:8080/othello/html/
Othello.html 

 Ranked according to average performance 
against so-called standard heuristic WPC 
(handcrafted strategy; moves partially 
randomized) (as of 2011)

 Players evolved by ETDL ranked higher 
than those produced by CTDL. Why?
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Hybridization: EA vs. CoEA

 Right: distribution of ranks obtained by ETDL 
(top) and CTDL (bottom) best-of-generation 
individuals in a round-robin competition with 
24 top Othello League players. 

 ETDL better on predefined opponent (heuristic 
WPC)

 CTDL better in face-to face confrontation with 
other opponents 

 ETDL overfits on the WPC

 CTDL: 

 produces more versatile players

 scales well with the number of parameters

 effective interplay of combinatorial evolutionary 
search and gradient-based search in continuous 
space of n-tuple weights.  

July 2016 Solving complex problems with 
coevolutionary algorithms 52

Coevolutionary shaping

  Shaping = key concept in behavioral psychology (Skinner 1938) 

  Expose the learner to a series of training episodes of gradually increasing difficulty. 

  Motivation: Tasks can be too difficult to learn autonomously. 

  Example: To train a pigeon to strike a ball, first reward looking at it, then approaching 
it, and only then striking the ball with the beak.  

  Used with success in Reinforcement Learning, e.g. pole balancing (Selfridge 
1986)

  Simplified version of tasks generated by relaxing/parameterizing the original one

  E.g. change the length of the pole, increase the mass, etc. 

  Related to: incremental evolution, staged evolution, environmental 
complexification

  Requires human intervention (decide how to relax the tasks, order them, etc.)
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Coevolutionary shaping
(Szubert 2014)
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Coevolutionary shaping

  Coevolution can be seen as a form of 
autonomous shaping

  Training experience = the sequence of 
tests to interact with

  What should be the gauge to decide how 
to form the training experience?

  Test difficulty: (exact or estimated)

  d(t) = Σs ∈ S (1 - g(s,t))  

  Top chart: manual shaping (d(t) ×100%). 

  Bottom: coevolutionary shaping: 
distribution of test difficulty in a 
coevolving population of tests  (Othello, 
WPC) (Szubert et al. 2013)

  Coevolutionary shaping works as well as 
the manual shaping, but requires less 
parameter tuning. 

ith
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Competitive Coevolution: 
Take-home messages

 Population of tests (and archives) accumulate potentially useful 
knowledge about a problem

 Coordinate systems = a means of widening the ‘evaluation 
bottleneck’ and making search algorithm better-informed 
 Other means to opening the bottleneck exist (in GP: semantic GP, behavioral 
GP)

 Competitive CoEAs tend to overspecialize on the stronger 
opponents while forgetting how to deal with the weaker ones 

 Importance of diversity (in particular diversity of tests) 

 A competitive CoEA can guide itself towards the optimum more 
efficiently 
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Not covered in this tutorial

 Measuring and visualizing progress (e.g., CIAO plots)

 Artificial problems: number games. Strategies represented as vectors of n elements. 

 Compare-on-all: A solution wins if it is better on all elements 

 Compare-on-one: a test picks a dimension at random; the solution wins if it’s greater on that dimension

 Other solution concepts (Ficici 2004, Poppovici et al. 2011)

 Simultaneous maximization of all outcomes, Nash equilibrium, Pareto-optimal set, Algorithms: (Ficici 2004) 
and review in (de Jong 2005) 

 Deciding upon the final outcome of a CoEA: “output mechanism” (Popovici and Winston 2015)

 Random Sampling Evolutionary Algorithm (Chong et al. 2008) - no true coevolution, but hard to 
beat using competitive CoEAs.

 Coevolutionary free lunches (Wolpert & Macready 2005; Service and Tauritz 2008; Popovici 
and Winston 2015)

 Hybridization with CMA-ES (Jaśkowski & Szubert, 2015) 
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III. Cooperative Coevolution
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Cooperative Coevolution

 Answers the question: 
 How to encourage collaboration?

 Metaphor:
 Divide and conquer!

 Why (is it useful?): Promoting modularity / reuse
 additional clarity in: (relative to a monolithic solution)

 credit assignment
  search space projected into multiple smaller search spaces
  agents do not need to solve all the task

 solution transparency
 capacity to react to changes (Simon’s parable of the two watch makers)

  Fitness: who to credit for what?
 generalist pathology: 

 individuals rewarded for maximizing the number of collaborations
 stable / mediocre solutions rather than optimal solutions
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A Metaphor…

 “species [individuals] represent solution components. 
Each individual forms a part of a complete solution but 
need not represent anything meaningful on its own. The 
components are evolved by measuring their contribution 
to complete solutions and recombining those that are 
most beneficial to solving the task.” [Gomez et al., (2008)]

 Central questions
 How to:

 compose a candidate solution (team)
 distinguish between credit to the team versus that to team 
members
 balance the exploration / exploitation tradeoff

 Learning context
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Cooperative Coevolution for complex 
systems : Some milestones

  Neural Networks
  Moriarty, Miikkulainen (1998)
  Potter & de Jong (2000)
  Gomez et al. (2008)
  Gomes et al. (2016)

  Genetic Programming
  Krzystof & Bhanu (2006, 2007)
  Thomason & Soule (2007), 
Rubini et al. (2009)
  Lichodzijewski & Heywood 
(2008)
  Wu & Banzhaf (2011)

  Formulating fitness functions
  Panait et al. (2006, 2008)
  Agogino & Tumar (2008), 
Knudson & Tumar (2010)

  Diversity maintenance
  Lichodzijewski et al. (2011)
  Doucette et al. (2012)
  Kelly & Heywood (2014)

  Non-stationary tasks
  Agogino & Tumar (2008)
  Vahdat et al, (2015)

  Reinforcement Learning
  Moriarty & Miikkulainen (1998)
  Gomez et al. (2008)
  Agogino & Tumar (2008), 
Knudson & Tumar (2010)
  Rubini et al. (2009)
  Doucette et al. (2012)
  Kelly & Heywood (2014, 2015)
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Cooperative Coevolution: An architecture
(Potter & De Jong, 2000)
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P1 P2 Pn

g1 g2 gn

Task domain

g1 g2 g Candidate
Solution

Prior decomposition of the solution into ‘n’ independent populations (species)

Biased and Lenient cooperation
(Panait et al., 2006), (Panait et al., 2008)

Biased cooperation
 Consider team versus 
individual fitness

  Individuals receive avg. of 
fitness from teams
 Promotes generalists
 Hitchhiking

 Recommend defining 
individual fitness as

 an *optimal* team of 
collaborators
 Not clear how an *optimal* 
collaborator set is found in 
the general case

Lenient cooperation
  Individual fitness

 MAXi in team  (teami fitness)

 Hitchhicking still exists

  Is hitchhiking all negative?
 Enables individuals to find 
their niche
 Provides a memory of 
previous / alternative 
policies
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Coevolving a cascade network
(Potter & De Jong, 2000)
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+
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w0

w1

w2

-1

w3

w3

w4

Individual 
from pop #1

Individual 
from pop #2

Individual 
from pop #3

SANE with blueprints
 (Moriarty & Miikkulainen, 1998)
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Blueprint population
(neural networks)

Weight population
(weights & connections)
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Difference evaluation functions
(Agogino & Tumar, 2008), (Knudson & Tumar, 2010), 

(Codly & Tumar, 2012)
  Global fitness

  Performance of entire collective
  Difficult to identify the contribution 

from each agent
  Local fitness

  Performance of single agent
  Difficult to encourage non-

overlapping collective behaviours
  Difference evaluation function (Di)

  Explicitly estimate value added by 
agent ‘i’

  Global fitness needs to be locally 
‘decomposable’

  Agents assigned w.r.t. physical 
locality to distributed sub-tasks

  Form of ‘spatial embedding’

  Di formulation
  Di = G(s) – G(s-i + Ci) 

  G(s)
  G( ) is the global evaluation function
  ‘s’ state of the system

  s-i 
  States for which agent ‘i’ have no 

contribution
  Ci

  Default vector of constants
  Observations

  In the worst case s-i is empty
  Agent ‘i’ impacts on all states

  Di directly expresses the impact of 
agent ‘i’ not present

  Limited by capacity to design 
appropriate `difference’ expression
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Cooperative Synapse NeuroEvolution
(Gomez et al., 2008)

 Select Parents 
 NNs (say, top 25%)

 Variation
 75% children

 Sort Pi w.r.t. f(wij)
 Pi : f(wi1) > f(wi2) >… 
f(wiβ)

 Stochastic permutation 
of Pi content

 Pi : f(wi1) f(wi2) … f(wiβ)
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ontent
(w ) f(ff w ) f(ff wi1wi1ww ) f(ff w )22) …22 f(ff wi2wi2w )22

Orthogonal evolution of (GP) teams (1)
(Thomason & Soule, 2007), (Rubini et al., 2009)

 Motivation
 Team selection:

 Good cooperation
 Poor individual fitness

 Island (individual) 
selection:

 Poor cooperation
 Strong individual fitness

 OET1 (OET2)
 Select w.r.t individuals 
(teams)
 Replace w.r.t. teams 
(individuals)
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GP (individuals) 
capable of 

performing role ‘i’

Team ‘j’

Fixed number of team members

Orthogonal evolution of (GP) teams (2)
(Thomason & Soule, 2007), (Rubini et al., 2009)

OET1
 Team = NULL
 Select best individual per 
role
 Create 2 such teams
 Apply variation operators
 Evaluate fitness
 Replace worst teams

OET2
 Select 2 best teams
 Apply variation operators
 Evaluate fitness
 Award fitness to 
individuals in same team
 Replace weakest 
individuals
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Level of Decomposition
(Krawiec & Bhanu, 2005), (Krawiec & Bhanu, 2007)
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III.1 Case Study – Symbiotic bid-
based GP

Variable GP teams, diversity maintenance, and 
separating action from context
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Abstract Model of Symbiosis
(Maynard Smith, 1991)

E
co

lo
gi

ca
l c

oe
xi

st
en

ce
 

Different subsets 
of individuals 

coexist 

Compartmentalization 
of the subsets 

Synchronized 
replication 

Increasing organism complexity 

Symbiotic Bid-Based GP (SBB)
(Lichodzijewski & Heywood, 2008, 2010), (Lichodzijewski et al., 2011) 
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Inter Host: 
Diversity 

Maintenance

Intra Host:
Program

Cooperation

Bid-based GP
(context)
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Achieving Symbiont Context
Bid-based GP

Action Bid

Scalar Program

Instruction
Set

Single ‘atomic’
Action
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Host Fitness

 Outcome vector, G( )
 Point (p(k)) to Host (h(i)) Outcome

G(h(i), p(k)) = 

 Inter Host Diversity Maintenance
 Fitness sharing (see also behavioural and novelty 
measures)
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Real valued reward (how close to 
target)
Domain specific

si =
X

k

 
G(hi, pk)P
j G(hj , pk)

!3

Asexual Reproduction
Species independence
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III.2 Case Study – SBB under 
non-stationary streams

Supporting Evolvability / Plasticity through Cooperative 
Coevolution
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Non-stationary Streaming data
(Vahdat et al., 2015)

Drift – ‘gradual’ variation
 150,000 exemplars over 
stream
 Window interface

 500 window locations
 20 exemplars sampled per 
window location

 10 attributes
 3 classes

 16%, 74%, 10%

Shift – ‘sudden’ variation
 6.5 million exemplars 
over stream
 Window interface

 1,000 window locations
 20 exemplars sampled per 
window location

 6 attributes
 5 classes

 36%, 49%, 6%, 0.5%, 
1.5%, 3%, 4%
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Accumulated multi-class detection rate
(Vahdat et al., 2015)
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Age of champion individual
During course of stream – Drift
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(Vahdat et al., 2015)

Age of champion individual
During course of stream – Shift
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(Vahdat et al., 2015)
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Observations

 Context for the symbiont programs must be 
evolved
 Bidding mechanism

 Support for problem decomposition
 Mix of symbiont programs per host an evolved trait
 Inter host diversity encourages decomposition at host 
level

 No prior knowledge on the nature of an appropriate 
decomposition
 Provides capacity for reacting to change

 Lower ‘age’ of champion
 Easier to switch in / out functional non-functional 
symbionts as contexts change
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III.3 Case Study – Diversity 
maintenance and Policy reuse

Hierarchical organization of programs, program 
abstraction
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Motivation – Population fails in task
(Lichodzijewski et al., 2011)
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Evolving a policy tree
(Lichodzijewski et al., 2011), (Doucette et al., 2012), (Kelly & Heywood 2014, 2015)
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Evaluating a policy tree
(Lichodzijewski et al., 2011), (Doucette et al., 2012), (Kelly & Heywood 2014, 2015)
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Hidden State Truck Backer-upper
(Lichodzijewski et al., 2011)
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Parameterization
(Lichodzijewski et al., 2011)

 SBB
 Max. Eval.: 16,800,000

 8,400,000 per layer
 Max Host Size: 10
 Host Pop.: 120
 Host Gap: 60 (50% turnover)
  (12 other parameters)

 Single layer SBB config.
 16,800,000 gen over 1 layer
 Double Max host size

 SBB (generic)
  Instruction set:

 {+, −, ×, ÷, cos, ln, exp, if R[x] 
< R[y] THEN sign(R[x])}

 NEAT
 Max. Eval.: 16,812,000
 NN Pop.: 150
  (17 other parameters)

 Common
 Point pop.: 120

 Point Gap: 20 (17% turnover)
 Uniform sampling (x, y, θc)

 Atomic actions (steering)
 0°, +30°, -30°
 Movement fixed at constant 
rate
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Level 0 Level 1 Single Level

NEAT
single

single
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Sample Solution Trajectories
(1 ‘pin’ per 10 moves)
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Sequencing of
`Atomic’
Actions

Deployment of
Layer 0 hosts

Key:
+ denotes 30 degrees
- denotes -30 degrees

Key:
Each symbol represents
(1 of 5) different layer 0

Hosts
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Keepaway soccer
Task definition (Stone et al, 2005)
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State variables
-- takers to keepers
-- ball assumes similar description

Game initial state
-- Stochastically defined
-- Robocup server

Interface to policy learner
Prior ‘keeper’ decision tree

Stone et al, (2005)
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‘Novelty’ style diversity metric
Kelly & Heywood (2014)

 All start states the ‘same’
 Encourage diversity in failure (novelty)
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Reward of individual 
‘hi’ on game ‘ej’

Distance between current 
game (ej) and ‘closest’ 

historical game (ehist) for 
alternate solution (hk)

Reward of 
alternate individ. 
(hk) in historical 

game (ehist)

si =
∑

j∈hhist

(
G(hi, ej)∑

k �=i(1− dist(ej , ehist))G(hk, ehist)

)

Keepaway TRAINING performance
With / Without diversity
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Kelly and Heywood (2014)

Keepaway TEST performance
1000 games, Sampled at intervals of 125 generations
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Kelly and Heywood (2014)
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Configuration 
experienced 

during training
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Cooperative Coevolution 
Concluding Comments (1 of 2)

  Highlights
  Separation of context and action

 Arbitrary team sizes under GP
 Maintaining Diversity significant

 Making diversity metrics ‘task free’? (see below)
  Reuse of previous policies leverages diversity for generalization

  Organization of code hierarchically
  Solutions generally simpler than monolithic models
  Easier to react to changing environments
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Cooperative Coevolution 
Concluding Comments (1 of 2)

  Some open questions (a non exhaustive list!)
  Credit for collective versus individuals
  What learning bias are most appropriate for diversity maintenance

  Task specific metrics
  E.g., (Nelson et al. 2009)

  … versus task independent metrics
  Novelty as an objective (Gomes, Christensen 2013), (Gomes et al., 2016)
  Compression distance (Gomez, 2009)
  Connectivity biases (Clune et al., 2013)
  Intra Team diversity (Kelly, Heywood, 2015), (Gomes et al., 2016)

  … versus how to ‘present’ diversity
  Pareto Multi-objective versus switching between multiple diversity metrics (Donieux, Mouret, 

2013)

  Cooperative coevolution and code reuse 
  Supervised learning (Jaskowski et al., 2014)
  Reinforcement learning (Kelly, Heywood, 2015), (Didi and Nitschke, 2016)

  Specialization versus generalization
  Heterogeneous versus Homogeneous deployment of policies within teams (Waibel et al., 2009), 

(Nitschke et al., 2012)
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Cooperative Coevolution
Example Benchmark task domains

  Feature identification to classification 
  K. Krawiec, B. Bhanu (2006, 2007); W. Jaskowski et al., (2014)

  Constructing hierarchal models for feature extraction and classification
  Double inverted pendulum / cart pole

  Gomez et al, (2008)
  Capacity for solving the task

  Truck reversal with obstacle
  Lichodzijewski et al, (2011)

  Capacity for solving the task / generalization
  Acrobot

  Doucette et al, (2012)
  Capacity for solving the task / generalization

  Predator-prey strategies
  Nitschke et al., (2012); Yong and Miikkulainen (2009); Rawael et al., (2010); Gomes et al., (2016)

  Task decomposition and collective problem solving
  Distributed multi-object location

  Agogino, Tumar (2008); Knudson, Tumar (2010); Colby, Tumar (2012)
  Task decomposition and (heterogeneous) collective problem solving

  Keepaway or Half field offense (soccer)
  Kelly, Heywood (2014, 2015), (Didi and Nitschke, 2016)

  Task decomposition and (homogeneous) collective problem solving
  Capacity for task / generalization through hierarchical code reuse

  Strategies for solving the Rubik’s Cube
  Smith et al., (2016)

  Task decomposition and capacity for task / generalization through hierarchical code reuse 

July 2016 Solving complex problems with 
coevolutionary algorithms 99 Solving Complex Problems with 

Coevolutionary Algorithms 100

IV. Closing remarks

July 2016 100

711



Closing remarks

 Coevolutionary algorithms = conceptually interesting 
and oftentimes efficient paradigm for solving complex 
problems
 Addresses key aspects of computational intelligence:

 What/who to learn from?
 How to drive the search/optimization?
 What is solution to my problem?
 How do I decompose my problem? 
 How do I make some entities cooperate?

 Many interesting results, 
 … even more open questions! 
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