
Solving Complex Problems with
Coevolutionary Algorithms

Krzysztof Krawiec1, Malcolm Heywood2
1Poznan University of Technology, Poland

2Dalhousie University, Canada

krawiec@cs.put.poznan.pl, mheywood@cs.dal.ca

http://www.sigevo.org/gecco-2016/
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
GECCO'16 Companion, July 20-24, 2016, Denver, CO, USA
ACM 978-1-4503-4323-7/16/07.
http://dx.doi.org/10.1145/2908961.2926989

Instructors
  Krzysztof Krawiec is an Associate Professor in the Laboratory of Intelligent

Decision Support Systems at Poznan University of Technology, Poznań,
Poland. His primary research areas are genetic programming and
coevolutionary algorithms, with applications in program synthesis, modeling,
image analysis, and games. Dr. Krawiec co­chaired the European Conference
on Genetic Programming in 2013 and 2014, the ACM GECCO GP track in
2015 and 2016, and is an associate editor of Genetic Programming and
Evolvable Machines journal. His work in the area of CoEAs includes problem
decomposition using cooperative coevolution, learning strategies for Othello,
Go, and other games using �competetive CoEAs, and discovery of underlying
objectives in test-based problems.

  Malcolm Heywood is a Professor of Computer Science at Dalhousie
University, Canada. His has a particular interest in scaling up the tasks that
genetic programming (GP) can potentially be applied to. His current research
is attempting the appraise the utility of coevolutionary methods under non-
stationary environments as encountered in streaming data applications, and
coevolving agents for single and multi-agent reinforcement learning tasks. In
the latter case the goal is to coevolve behaviours for playing soccer under the
RoboSoccer environment (a test bed for multi-agent reinforcement learning).
Dr. Heywood is a member of the editorial board for Genetic Programming and
Evolvable Machines (Springer). He was a track co-chair for the GECCO GP
track in 2014 and a co-chair for European Conference on Genetic
Programming in 2015 and 2016.

July 2016 Solving complex problems with
coevolutionary algorithms 2

Solving Complex Problems with
Coevolutionary Algorithms 3

Agenda
  I. Introduction
  II. Competitive coevolution
  Core concepts
  One-population competitive coevolution
  Two-population competitive coevolution

  Advanced topics

  III. Cooperative coevolution
  Core concepts
  Case study: Symbiotic bid-based GP

  Case study: SBB under non-stationary streams
  Case study: Diversity maintenance and policy reuse

  IV. Closing remarks

July 2016 July 2016 Solving complex problems with
coevolutionary algorithms 4

I. Introduction

687

July 2016 Solving complex problems with
coevolutionary algorithms 5

Canonical assumptions made by EA

 An absolute measure of fitness is available and computable.

  ‘Complete’ definition of task / environment

 Solutions are (more or less) monolithic.

  Each individual encodes a complete solution to a problem

  Tasks are not explicitly decomposed.

 Coevolutionary algorithms (CoEA) revise these assumptions.

July 2016 Solving complex problems with
coevolutionary algorithms 6

What is a coevolutionary algorithm?

 A variant of EC where fitness function mandates the
individuals to engage into direct interactions.

 Fitness cannot be computed for isolated individuals.

 Formally:

 Evolutionary algorithm (EA): f: X E

 Coevolutionary algorithm (CoEA): f: X1×X2×...×Xn E,
where E is an evaluation codomain (typically R)

 Interaction = a tuple from X1×X2×...×Xn

July 2016 Solving complex problems with
coevolutionary algorithms 7

EA vs. CoEA

EA
Absolute measure of fitness f available

and computable for each individual
separately.

CoEA
Search gradient can be obtained only
by letting individuals interact. Exact
fitness may be not computable.

July 2016 Solving complex problems with
coevolutionary algorithms 8

Consequences

 Individuals' performances depend on each other (fitness is contextual)

 The solution of a problem can be:

 An element of Xi (as in an EA)

 Typical for competitive CoEA (with exceptions)

 Key questions: What to evolve against? Who is the best teacher?

 A combination of elements from Xis

 Typical for cooperative CoEA (with exceptions)

 Key questions: How to encourage cooperation? Divide and conquer.

 Pertains to so-called solution concepts, see later

 Remember: individual ≠ solution

688

July 2016 Solving complex problems with
coevolutionary algorithms 9

What is it good for?

  CoEAs lend themselves conveniently to a few classes of problems of
theoretical and practical interest.

  Competitive CoEAs: test-based problems, games, interactive domains

 Example: individual=game strategy, fitness=expected game
outcome

  Cooperative CoEAs: problem decomposition, modularity, credit assignment

 Example: individual=a rule in a classifier, fitness=overall
accuracy of the classifier

  Class of problems: co-search, co-optimization, generalised optimisation
(Wolpert and Macready 2005)

July 2016 Solving complex problems with
coevolutionary algorithms 10

Other characteristics of CoEAs

 Operate under incomplete information (uncertainty)

  Focus on evaluation and interaction schemes (less so on
search operators)

  Individuals often maintained in several populations.

 Biological analogs:

 No global, static fitness function in Nature

 Nature does not optimize for anything; EAs do.

  Individual's fitness results from its interactions with environment,
including other individuals of the same species

July 2016 Solving complex problems with
coevolutionary algorithms 11

Measuring progress:
Subjective vs. objective fitness

 Subjective fitness: f calculated using the currently
available elements of Xis (a sample)

 Typically those available in the current population,

 Example: average game outcome against the opponents from
the current population

 Objective fitness: f calculated with the elements chosen
in a principled manner.
Examples:

 Average game outcome against all possible opponents

 Game outcome against a human-crafted opponent.

II.1. Competitive coevolution

July 2016 12Solving complex problems with
coevolutionary algorithms

689

July 2016 Solving complex problems with
coevolutionary algorithms 13

Class of problems tackled by competitive
CoEAs

  Interactive domains
  Sets of individuals (entities*)

  Interaction function (payoff function)
g: X1×X2×...×Xn R

  When n=2, the second argument is
an opponent.

  Note: g alone does not define the
search goal.

  What is the solution to the
problem?

(*) Sometimes, but not always, identified with
candidate solutions

  Solution concept (cf. Ficici 2004,
Popovici et al. 2012):

  Criterion specifying whether a
potential solution

  is better than another solution
(in co-optimization),

  is solution to a problem (in co-
search)

  Most popular SC: Maximization of
Expected Utility (MEU):
fo(x) = E[g(x1,x2)]

  A.k.a. generalization performance
(Chong et al. 2008)

  Competitive CoEAs realize
knowledge-free approach to
solving problems posed in
interactive domains.

July 2016 Solving complex problems with
coevolutionary algorithms 14

Subjective fitness

  Challenge: calculation of fo is often computationally infeasible.
  Example: Othello: game tree complexity 1058

  Number of unique strategies typically much higher, due to many-to-one genotype-
phenotype mapping

  Solutions:
  1. Fix the set of opponents.

  For instance, well-performing known opponents (e.g., handcrafted by humans)

  Strong bias, limited generalization

  2. Draw the opponents at random

  What is the 'right' distribution of opponents?

  Drawing uniformly in the genotypic space does not result in desired (e.g., uniform)
distribution of skills/capabililties

  3. Competitive coevolution

July 2016 Solving complex problems with
coevolutionary algorithms 15

Example: Game of Othello

  Two-player, perfect-information, turn-
based, zero-sum game

  Still unsolved
  Sudden changes of game state

possible
  Strategy = individual (candidate

solution)
  Common competitive CoEA

approach:
  Evolve board evaluation function b()
  Use it in one-ply search: simulate all

legal single moves from the current
state and choose the one that
maximizes b.

  Popular representations of board
evaluation functions: weighted piece
counter and n-tuples

July 2016 Solving complex problems with
coevolutionary algorithms 16

Weighted Piece Counter (WPC)

  Single linear neuron with 64
weights: b(s) = Σi wisi

  Top: handcrafted Othello WPC
board evaluation function
(standard WPC heuristics)

  Bottom: a function evolved using
one-population competitive
CoEA, hybridized with TDL
(Szubert, Jaśkowski, Krawiec
2009)

690

July 2016 Solving complex problems with
coevolutionary algorithms 17

N-tuple networks
(Lucas 1997)

  Combinatorial network with lookup
tables holding all combinations for
(usually randomly selected)
subsets of (usually adjacent)
board locations

  3n weights for a single n-tuple for
tri-state boards (for Othello: empty,
black, white)

  Top: Exemplary 3-tuple and 4-
tuple for base-3 numbers:

  2*32 + 0*31 + 1*30 = 19

  1*33 + 0*32 + 2*31 + 1*30 = 34

  Bottom: Examples of CTDL co-
evolved n-tuples (Szubert,
Jaśkowski, Krawiec, 2013)

July 2016 Solving complex problems with
coevolutionary algorithms 18

One-population competitive CoEA

  The simplest setup to approach MEU problems.

  Applicable when X1 = X2 = ... = Xn = X

  E.g. symmetric games

  Usually: fs(x) = Σx’∈X’ g(x,x’), where X’ is some sample of X drawn from current population P

  An interaction = single game (symmetric games) or two games (asymmetric
games)

  Interaction schemes:

  Round-robin: n(n-1)/2 interactions (X’ = P \ {x})

  k-random opponents: kn interactions (|X’| = k)

  Single-elimination tournament (SET): n interactions

  Pair the individuals at random. Winners pass to the next stage. Individual's fitness is the stage
of tournament it reached.

July 2016 Solving complex problems with
coevolutionary algorithms 19

Highlights of one-pop competitive CoEAs

  Iterated Prisoner’s Dilemma, IPD (Axelrod 1987)
 Backgammon (Pollack & Blair 1998)
 Checkers (Samuel 1959, Fogel 2002)
 NERO, Blackjack, Pong, Small-board GO, Tetris, …

July 2016 Solving complex problems with
coevolutionary algorithms 20

Fitnessless Coevolution
(Jaśkowski, Krawiec, Wieloch 2008)

 More specifically: fitnessless selection
 Pick k individuals at random

 Run a SET on them

 The winner of SET is selected

 Does not rely on subjective fitness.

691

Fitnessless Coevolution for Ant Wars
(Jaśkowski, Krawiec, Wieloch 2008)

  Fitnessless Coevolution evolved the winner of the Ant Wars GECCO'08 contest

  Two-player partially observable game

  Agents (ants) see only a 5x5 fragment of the toroidal 11x11 board

  The goal: collect more food pellets than the opponent (pellet locations are random).

  Strategy representation: stateful GP program (maintains intra-game memory)

July 2016 21Solving complex problems with
coevolutionary algorithms July 2016 Solving complex problems with

coevolutionary algorithms 22

Example: Ant Wars

Complex behaviors emerged: systematic search, rational
choice of trajectories, …

July 2016 Solving complex problems with
coevolutionary algorithms 23

Example: Ant Wars

… memorizing locations of food pellets, opponent avoidance,
pseudo-suicide, …

 Online demo: http://www.cs.put.poznan.pl/kkrawiec/antwars/
July 2016 Solving complex problems with

coevolutionary algorithms 24

Digression: Importance of transitivity

  Fitnessless Coevolution is not equivalent to fitness-driven one-population
coevolution if there are cycles in interactions in between individuals (Jaśkowski,
Krawiec, Wieloch 2008)

  Example: Tic-tac-toe strategies A, B, C: place a mark in the numbered locations
if free, otherwise in the location marked by asterisk (*)

  A beats B, and B beats C. But A does not beat C, just the opposite.
  Tic-tac-toe is intransitive.
  No scalar fitness function can model this (can realize only complete orders).

692

July 2016 Solving complex problems with
coevolutionary algorithms 25

The philosophy behind one-pop
competitive CoEA

  Individuals create search
gradient for each other.

  A form of (population-level) self-
learning

  Can be seen as an analog to
self-play in RL (individual-level)

  Q: Is this sufficient to
guarantee progress?

  A: No.
Coevolutionary pathologies are
lurking out there.

July 2016 Solving complex problems with
coevolutionary algorithms 26

Coevolutionary pathologies

  Cycling: evolution keeps rediscovering the same solutions

  Particularly likely if game is intransitive.

  Disengagement: opponents are either trivial or way too difficult to beat

  Overspecialization (focusing): mastering the skills of beating some
opponents while neglecting the others.

  Forgetting: opponents defeated in the past turn out to be difficult again.

  See review and rigorous analysis in (Ficici 2004)

  Main causes:

  No access to objective fitness

  Population responsible for both search and providing search gradient for itself

July 2016 Solving complex problems with
coevolutionary algorithms 27

Coevolutionary archive competitive
CoEAs (one-population)

Archive = a container storing well-
performing individuals, maintained
alongside population.

  Provides long-term memory
  Builds search gradient
  Prevents some pathologies
  Maintains diversity and progress

Archives help maintaining historic
progress (Miconi 2009)

  Not necessarily progress in the
global, objective sense.

How it works:
  Search algorithm submits some

individuals to the archive
  Archive accepts some of them
  Individuals in population interact with

peers and archival individuals
  Outcomes of interactions augment

the fitness
  Simplest archive: best-so-far

individual
  Hall of fame (Rosin & Belew, 1997)

  Stores all best-of-generation individuals
found so far

  Population members play against each
other and against the opponents from
HoF

II.2. Two-population competitive
CoEAs

July 2016 28Solving complex problems with
coevolutionary algorithms

693

Solving Complex Problems with
Coevolutionary Algorithms 29

Two-population competitive CoEAs

  One-pop competitive CoEA: Population responsible for both
searching for good solutions and providing search gradient for itself.

 Why not separate these functions?

  Two-pop competitive CoEAs: Maintain separate populations of:

  candidate solutions S ⊂ X1 – intended to solve the problem

  tests T ⊂ X2 – provide only search gradient for the individuals in S

  Applicable in symmetric (X1 = X2) and asymmetric setting (X1 ≠ X2)

July 2016 July 2016 Solving complex problems with
coevolutionary algorithms 30

Two-population competitive CoEA

  Typical interaction scheme: all-to-all
  S and T co-evolve in parallel
  No transfer of individuals between S and T

July 2016 Solving complex problems with
coevolutionary algorithms 31

What to reward the tests for?

  Individuals in S should maximize EU. How to reward the tests?

  Maximize EU as well?

  Pathologies likely

  Tests should be neither too easy nor to hard for the individuals in S

  Common reward schemes:

  Distinctions: reward a test for every pair of solutions it distinguishes

  Informativeness: reward a test for unique partitioning of S

  Hybrids (e.g., with EU)

July 2016 Solving complex problems with
coevolutionary algorithms 32

Test-based problems

  With two populations, the tests can be conceptually different from
candidate solutions.
  Formally: Test-based problem (S, T, G, Q) (Popovici et al., 2012)

  Examples:
  Asymmetric games (strategies vs. opponents)

  E.g., tic-tac-toe, Othello,
  Control problems (controllers vs. initial conditions)

  Pole balancing, car control, etc.
  Learning from examples (hypotheses vs. examples)
  Program synthesis with GP (programs vs. tests)
  In general: co-optimization and co-search

694

July 2016 Solving complex problems with
coevolutionary algorithms 33

Pareto-coevolution
(Ficici and Pollack, 2001; Noble and Watson, 2001)

  Each test considered as a separate objective.
  Transforms a test-based problem into multiobjective optimization
problem (or many-objective one).
  Example:

 s1 solves both tests t1 and t2
 s2 solves only t2
 s3 solves only t1

  Problem: large number of tests (and thus objectives).
  Sparse dominance relation.

July 2016 Solving complex problems with
coevolutionary algorithms 34

Coevolutionary archives
(two-pop)

  General scheme: individuals are submitted to archive and get
accepted or rejected by it.
  Separate archives for solutions and tests

Solving Complex Problems with
Coevolutionary Algorithms 35

Coevolutionary archive algorithms
(two-pop)

  Iterated Pareto-Coevolutionary Archive, IPCA (de Jong 2004)
  A new solution s is added to Sar if no s’ ∈ Sar dominates s. In that case:

  All s” ∈ Sar dominated by s are removed from Sar

  The test t that made it possible for s to be added to Sar is added to Tar

  Guarantees monotonous progress
  Unlimited-size archive
  Tests provide for distinctions between individuals

  Layered Pareto-Coevolutionary Algorithm, LAPCA (de Jong 2004)
  Merges the current archive and the submitted elements and builds a Pareto ranking of

solutions
  The first k layers of the ranking remain in Sar, the remaining ones are discarded
  Tar keeps the tests that support Pareto dominance in Sar

  No guarantee of monotonous progress, but (somehow) controllable size

  IPCA and LAPCA perform well only on small, usually artificial problems.

July 2016 Solving Complex Problems with
Coevolutionary Algorithms 36

Coevolutionary archives

  Maintaining archives can be costly
 Many interactions required to check if a solution should be added

  Mitigation: MaxSolve (De Jong 2005), for MEU solution concept

  Keep in Sar up to n solutions that solve the most tests (at least one), and
in Tar all tests that a solved by at least one s ∈ Sar

  [Behaviorally] duplicate tests are discarded

 Monotonic: will not miss solutions that increase the number of solved
tests

  When overhead of maintaining an archive counted in, non-
archived algorithms can be equally efficient.

  Other types of archives (Jaśkowski & Krawiec 2010)

July 2016

695

July 2016 Solving complex problems with
coevolutionary algorithms 37

Related results and concepts

  Ideal evaluation and complete evaluation set
(de Jong and Pollack 2004)

 The set of tests that preserves dominance relation between the
solutions in S
 Determining the minimal complete evaluation set is NP hard
(Jaśkowski & Krawiec 2011)

July 2016 Solving complex problems with
coevolutionary algorithms 38

Genetic Programming: Program
synthesis as a test-based problem

  Genetic programming
  S = population of candidate
programs
  T = population of tests (fitness
cases)

  Simple variant: Pairwise Comparison
of Hypotheses (Krawiec 2001)

  Dominance-based selection of
hypotheses
  Dominance-based maintenance of
best solutions
  Dominance-based selection of the
best solutions (algorithm outcome)

  Applied to handwritten character
recognition

  See also: (Arcuri & Yao 2014)

II.3. Advanced topics in
competitive coevolution

Hybridization, coordinate systems,
coevolutionary shaping

July 2016 39Solving complex problems with
coevolutionary algorithms July 2016 Solving complex problems with

coevolutionary algorithms 40

Coordinate systems

 An interaction matrix defines a dominance relation
 Dominance relation defines a partial order in the set of
individuals ⇒ partially ordered set, poset

 A poset can be 'stretched' along multiple dimensions
(underlying dimensions).
 Dimensions form a coordinate system (Bucci et al. 2004):

 Axis = ordered list of tests
 (alternative formulations exist)

696

July 2016 Solving complex problems with
coevolutionary algorithms 41

Coordinate system: an example
•  The game: Nim-1-3

–  Players in turns take sticks from two piles of size 1 and 3.
•  Total of 144 strategies,

–  but only 6 behaviorally unique for the first player (S), and 9 for the
second player (T).

•  Minimal coordinate system
–  Some tests not needed to reproduce the dominance relation

•  Game dimension: 2

July 2016 Solving complex problems with
coevolutionary algorithms 42

Coordinate systems: some results

  Benefits:

  Can accelerate convergence and/or guarantee progress: Dimension
Extraction Coevolutionary Algorithm, DECA (de Jong and Bucci 2006)

  Reveal the internal structure of a problem and relate to problem difficulty

  Hypothesis: dimensionality of coordinate system is a yardstick of
problem difficulty

  The set of all tests forms the complete evaluation set (de Jong &
Pollack 2004)

  Game dimension = width of the poset (Jaśkowski & Krawiec 2011)

  The number of underlying objectives for an abstract problem seems
to be limited by a logarithm of the number of tests.

Solving Complex Problems with
Coevolutionary Algorithms 43

Problems with exact coordinate systems

  Problem dimension may be
underestimated when only
samples of S and T are used.

  Finding minimal CS for a
problem is NP-hard (Jaśkowski
& Krawiec 2011)

  Heuristics exist but
overestimate the number of
dimensions

  Nontrivial test-based problems
have very high dimensionality

  Q: Can we efficiently
‘approximate’ the underlying
dimensions?

July 2016 July 2016 Solving complex problems with
coevolutionary algorithms 44

Heuristic discovery of underlying objectives

  Idea:

 Construct efficiently approximate underlying objectives from the
information available at the given stage of search process

 Use the derived objectives in multiobjective EA setting

  Derived objectives rather than underlying objectives

 Approximate (do not reproduce the original dominance)

 Transient (depend on the current populations)

  Technical means: clustering of tests

697

July 2016 Solving complex problems with
coevolutionary algorithms 45

Heuristic discovery of underlying objectives
(Krawiec & Liskowski 2015, Liskowski & Krawiec 2016)

•  ‘Batch evaluation’ of
population (as in implicit
fitness sharing)

•  Example: four candidates:
S = {a,b,c,d}, five tests:
T = {t1,t2,t3,t4,t5}

•  No guarantee to reproduce
the original dominance
relation.

•  ‘False positive’ dominance
possible.

•  ‘False negative’ –
impossible.

Solving Complex Problems with
Coevolutionary Algorithms 46

Heuristic discovery of underlying objectives

July 2016

Solving Complex Problems with
Coevolutionary Algorithms 47

Heuristic discovery of underlying objectives

 Results for 9-choice iterated prisoner’s dilemma, IPD (MEU)
 k-MEANS: k objectives derived using k-means clustering algorithm

 k-RAND: objectives built by random partitioning of tests into k objectives

 Applied also in non-coevolutionary setting with GP, with k adjusted automatically
(Krawiec & Liskowski 2015). Better than GP and RAND, comparable to IFS.

July 2016
Solving Complex Problems with

Coevolutionary Algorithms 48

Heuristic discovery of underlying objectives
(Liskowski & Krawiec 2016)

July 2016

698

Solving Complex Problems with
Coevolutionary Algorithms 49

Hybridization
  CoEAs are generate-and-test techniques (like EA)

  In contrast, gradient-based methods provide ‘directed’ corrections/updates of
parameters

  Can be more efficient in high-dimensional problems
  Complementary: CoEAs learn slower than TDL but eventually outperform it (Lucas &

Runarsson 2006)

  Coevolutionary Temporal Difference Learning, CTDL (Krawiec & Szubert 2011,
Szubert et al. 2013)

  Interleave one-population coevolution (with round-robin) with TD(0)
  CoEA picks the ‘right’ opponents, TDL tunes the solutions in a self-play mode
  CoEA modifies the topology of n-tuples. TDL only affects the weights.

  A form of memetic algorithm (genetic local search) (Moscato 1989): individuals’
interactions with the environment influence their genotypes (Lamarckian
evolution).

  Related to: adversary reinforcement learning

July 2016 July 2016 Solving complex problems with
coevolutionary algorithms 50

Hybridization

 Othello, n-tuples (Szubert, Jaśkowski,
Krawiec 2013)

 Compared also to ETDL= EA+TD(0)

 Othello Evaluation Function League

 http://algoval.essex.ac.uk:8080/othello/html/
Othello.html

 Ranked according to average performance
against so-called standard heuristic WPC
(handcrafted strategy; moves partially
randomized) (as of 2011)

 Players evolved by ETDL ranked higher
than those produced by CTDL. Why?

July 2016 Solving complex problems with
coevolutionary algorithms 51

Hybridization: EA vs. CoEA

 Right: distribution of ranks obtained by ETDL
(top) and CTDL (bottom) best-of-generation
individuals in a round-robin competition with
24 top Othello League players.

 ETDL better on predefined opponent (heuristic
WPC)

 CTDL better in face-to face confrontation with
other opponents

 ETDL overfits on the WPC

 CTDL:

 produces more versatile players

 scales well with the number of parameters

 effective interplay of combinatorial evolutionary
search and gradient-based search in continuous
space of n-tuple weights.

July 2016 Solving complex problems with
coevolutionary algorithms 52

Coevolutionary shaping

  Shaping = key concept in behavioral psychology (Skinner 1938)

  Expose the learner to a series of training episodes of gradually increasing difficulty.

  Motivation: Tasks can be too difficult to learn autonomously.

  Example: To train a pigeon to strike a ball, first reward looking at it, then approaching
it, and only then striking the ball with the beak.

  Used with success in Reinforcement Learning, e.g. pole balancing (Selfridge
1986)

  Simplified version of tasks generated by relaxing/parameterizing the original one

  E.g. change the length of the pole, increase the mass, etc.

  Related to: incremental evolution, staged evolution, environmental
complexification

  Requires human intervention (decide how to relax the tasks, order them, etc.)

699

July 2016 Solving complex problems with
coevolutionary algorithms 53

Coevolutionary shaping
(Szubert 2014)

July 2016 Solving complex problems with
coevolutionary algorithms 54

Coevolutionary shaping

  Coevolution can be seen as a form of
autonomous shaping

  Training experience = the sequence of
tests to interact with

  What should be the gauge to decide how
to form the training experience?

  Test difficulty: (exact or estimated)

  d(t) = Σs ∈ S (1 - g(s,t))

  Top chart: manual shaping (d(t) ×100%).

  Bottom: coevolutionary shaping:
distribution of test difficulty in a
coevolving population of tests (Othello,
WPC) (Szubert et al. 2013)

  Coevolutionary shaping works as well as
the manual shaping, but requires less
parameter tuning.

ith

July 2016 Solving complex problems with
coevolutionary algorithms 55

Competitive Coevolution:
Take-home messages

 Population of tests (and archives) accumulate potentially useful
knowledge about a problem

 Coordinate systems = a means of widening the ‘evaluation
bottleneck’ and making search algorithm better-informed
 Other means to opening the bottleneck exist (in GP: semantic GP, behavioral
GP)

 Competitive CoEAs tend to overspecialize on the stronger
opponents while forgetting how to deal with the weaker ones

 Importance of diversity (in particular diversity of tests)

 A competitive CoEA can guide itself towards the optimum more
efficiently

July 2016 Solving complex problems with
coevolutionary algorithms 56

Not covered in this tutorial

 Measuring and visualizing progress (e.g., CIAO plots)

 Artificial problems: number games. Strategies represented as vectors of n elements.

 Compare-on-all: A solution wins if it is better on all elements

 Compare-on-one: a test picks a dimension at random; the solution wins if it’s greater on that dimension

 Other solution concepts (Ficici 2004, Poppovici et al. 2011)

 Simultaneous maximization of all outcomes, Nash equilibrium, Pareto-optimal set, Algorithms: (Ficici 2004)
and review in (de Jong 2005)

 Deciding upon the final outcome of a CoEA: “output mechanism” (Popovici and Winston 2015)

 Random Sampling Evolutionary Algorithm (Chong et al. 2008) - no true coevolution, but hard to
beat using competitive CoEAs.

 Coevolutionary free lunches (Wolpert & Macready 2005; Service and Tauritz 2008; Popovici
and Winston 2015)

 Hybridization with CMA-ES (Jaśkowski & Szubert, 2015)

700

III. Cooperative Coevolution

July 2016 57Solving complex problems with coevolutionary algorithms

Cooperative Coevolution

 Answers the question:
 How to encourage collaboration?

 Metaphor:
 Divide and conquer!

 Why (is it useful?): Promoting modularity / reuse
 additional clarity in: (relative to a monolithic solution)

 credit assignment
  search space projected into multiple smaller search spaces
  agents do not need to solve all the task

 solution transparency
 capacity to react to changes (Simon’s parable of the two watch makers)

  Fitness: who to credit for what?
 generalist pathology:

 individuals rewarded for maximizing the number of collaborations
 stable / mediocre solutions rather than optimal solutions

July 2016 Solving complex problems with
coevolutionary algorithms 58

A Metaphor…

 “species [individuals] represent solution components.
Each individual forms a part of a complete solution but
need not represent anything meaningful on its own. The
components are evolved by measuring their contribution
to complete solutions and recombining those that are
most beneficial to solving the task.” [Gomez et al., (2008)]

 Central questions
 How to:

 compose a candidate solution (team)
 distinguish between credit to the team versus that to team
members
 balance the exploration / exploitation tradeoff

 Learning context

July 2016 Solving complex problems with
coevolutionary algorithms 59

Cooperative Coevolution for complex
systems : Some milestones

  Neural Networks
  Moriarty, Miikkulainen (1998)
  Potter & de Jong (2000)
  Gomez et al. (2008)
  Gomes et al. (2016)

  Genetic Programming
  Krzystof & Bhanu (2006, 2007)
  Thomason & Soule (2007),
Rubini et al. (2009)
  Lichodzijewski & Heywood
(2008)
  Wu & Banzhaf (2011)

  Formulating fitness functions
  Panait et al. (2006, 2008)
  Agogino & Tumar (2008),
Knudson & Tumar (2010)

  Diversity maintenance
  Lichodzijewski et al. (2011)
  Doucette et al. (2012)
  Kelly & Heywood (2014)

  Non-stationary tasks
  Agogino & Tumar (2008)
  Vahdat et al, (2015)

  Reinforcement Learning
  Moriarty & Miikkulainen (1998)
  Gomez et al. (2008)
  Agogino & Tumar (2008),
Knudson & Tumar (2010)
  Rubini et al. (2009)
  Doucette et al. (2012)
  Kelly & Heywood (2014, 2015)

July 2016 Solving complex problems with
coevolutionary algorithms 60

701

Cooperative Coevolution: An architecture
(Potter & De Jong, 2000)

July 2016 Solving complex problems with
coevolutionary algorithms 61

P1 P2 Pn

g1 g2 gn

Task domain

g1 g2 g Candidate
Solution

Prior decomposition of the solution into ‘n’ independent populations (species)

Biased and Lenient cooperation
(Panait et al., 2006), (Panait et al., 2008)

Biased cooperation
 Consider team versus
individual fitness

  Individuals receive avg. of
fitness from teams
 Promotes generalists
 Hitchhiking

 Recommend defining
individual fitness as

 an *optimal* team of
collaborators
 Not clear how an *optimal*
collaborator set is found in
the general case

Lenient cooperation
  Individual fitness

 MAXi in team (teami fitness)

 Hitchhicking still exists

  Is hitchhiking all negative?
 Enables individuals to find
their niche
 Provides a memory of
previous / alternative
policies

July 2016 Solving complex problems with
coevolutionary algorithms 62

Coevolving a cascade network
(Potter & De Jong, 2000)

July 2016 Solving complex problems with
coevolutionary algorithms 63

x0

x1

+

w0

w1

w2

y1

-1

+ y2

w0

w1

w2

-1

+ y3

w0

w1

w2

-1

w3

w3

w4

Individual
from pop #1

Individual
from pop #2

Individual
from pop #3

SANE with blueprints
 (Moriarty & Miikkulainen, 1998)

July 2016 Solving complex problems with
coevolutionary algorithms 64

Blueprint population
(neural networks)

Weight population
(weights & connections)

702

Difference evaluation functions
(Agogino & Tumar, 2008), (Knudson & Tumar, 2010),

(Codly & Tumar, 2012)
  Global fitness

  Performance of entire collective
  Difficult to identify the contribution

from each agent
  Local fitness

  Performance of single agent
  Difficult to encourage non-

overlapping collective behaviours
  Difference evaluation function (Di)

  Explicitly estimate value added by
agent ‘i’

  Global fitness needs to be locally
‘decomposable’

  Agents assigned w.r.t. physical
locality to distributed sub-tasks

  Form of ‘spatial embedding’

  Di formulation
  Di = G(s) – G(s-i + Ci)

  G(s)
  G() is the global evaluation function
  ‘s’ state of the system

  s-i
  States for which agent ‘i’ have no

contribution
  Ci

  Default vector of constants
  Observations

  In the worst case s-i is empty
  Agent ‘i’ impacts on all states

  Di directly expresses the impact of
agent ‘i’ not present

  Limited by capacity to design
appropriate `difference’ expression

July 2016 Solving complex problems with
coevolutionary algorithms 65

Cooperative Synapse NeuroEvolution
(Gomez et al., 2008)

 Select Parents
 NNs (say, top 25%)

 Variation
 75% children

 Sort Pi w.r.t. f(wij)
 Pi : f(wi1) > f(wi2) >…
f(wiβ)

 Stochastic permutation
of Pi content

 Pi : f(wi1) f(wi2) … f(wiβ)

July 2016 Solving complex problems with
coevolutionary algorithms 66

ontent
(w) f(ff w) f(ff wi1wi1ww) f(ff w)22) …22 f(ff wi2wi2w)22

Orthogonal evolution of (GP) teams (1)
(Thomason & Soule, 2007), (Rubini et al., 2009)

 Motivation
 Team selection:

 Good cooperation
 Poor individual fitness

 Island (individual)
selection:

 Poor cooperation
 Strong individual fitness

 OET1 (OET2)
 Select w.r.t individuals
(teams)
 Replace w.r.t. teams
(individuals)

July 2016 Solving complex problems with
coevolutionary algorithms 67

GP (individuals)
capable of

performing role ‘i’

Team ‘j’

Fixed number of team members

Orthogonal evolution of (GP) teams (2)
(Thomason & Soule, 2007), (Rubini et al., 2009)

OET1
 Team = NULL
 Select best individual per
role
 Create 2 such teams
 Apply variation operators
 Evaluate fitness
 Replace worst teams

OET2
 Select 2 best teams
 Apply variation operators
 Evaluate fitness
 Award fitness to
individuals in same team
 Replace weakest
individuals

July 2016 Solving complex problems with
coevolutionary algorithms 68

703

Level of Decomposition
(Krawiec & Bhanu, 2005), (Krawiec & Bhanu, 2007)

July 2016 Solving complex problems with
coevolutionary algorithms 69

III.1 Case Study – Symbiotic bid-
based GP

Variable GP teams, diversity maintenance, and
separating action from context

July 2016 70Solving complex problems with coevolutionary algorithms

July 2016 Solving complex problems with
coevolutionary algorithms 71

Abstract Model of Symbiosis
(Maynard Smith, 1991)

E
co

lo
gi

ca
l c

oe
xi

st
en

ce

Different subsets
of individuals

coexist

Compartmentalization
of the subsets

Synchronized
replication

Increasing organism complexity

Symbiotic Bid-Based GP (SBB)
(Lichodzijewski & Heywood, 2008, 2010), (Lichodzijewski et al., 2011)

July 2016 Solving complex problems with
coevolutionary algorithms 72

Inter Host:
Diversity

Maintenance

Intra Host:
Program

Cooperation

Bid-based GP
(context)

704

Achieving Symbiont Context
Bid-based GP

Action Bid

Scalar Program

Instruction
Set

Single ‘atomic’
Action

July 2016 73Solving complex problems with
coevolutionary algorithms

Host Fitness

 Outcome vector, G()
 Point (p(k)) to Host (h(i)) Outcome

G(h(i), p(k)) =

 Inter Host Diversity Maintenance
 Fitness sharing (see also behavioural and novelty
measures)

July 2016 Solving complex problems with
coevolutionary algorithms 74

Real valued reward (how close to
target)
Domain specific

si =
X

k

G(hi, pk)P
j G(hj , pk)

!3

Asexual Reproduction
Species independence

July 2016 Solving complex problems with
coevolutionary algorithms 75

III.2 Case Study – SBB under
non-stationary streams

Supporting Evolvability / Plasticity through Cooperative
Coevolution

July 2016 76Solving complex problems with
coevolutionary algorithms

705

Non-stationary Streaming data
(Vahdat et al., 2015)

Drift – ‘gradual’ variation
 150,000 exemplars over
stream
 Window interface

 500 window locations
 20 exemplars sampled per
window location

 10 attributes
 3 classes

 16%, 74%, 10%

Shift – ‘sudden’ variation
 6.5 million exemplars
over stream
 Window interface

 1,000 window locations
 20 exemplars sampled per
window location

 6 attributes
 5 classes

 36%, 49%, 6%, 0.5%,
1.5%, 3%, 4%

July 2016 Solving complex problems with
coevolutionary algorithms 77

Accumulated multi-class detection rate
(Vahdat et al., 2015)

July 2016 Solving complex problems with
coevolutionary algorithms 78S l i l bl i h

M
ul

ti-
cl

as
s

D
R

Drift
Modular

Drift
Monolithic

Shift
Modular

Shift
Monolithic

Age of champion individual
During course of stream – Drift

July 2016 Solving complex problems with
coevolutionary algorithms 79

(Vahdat et al., 2015)

Age of champion individual
During course of stream – Shift

July 2016 Solving complex problems with
coevolutionary algorithms 80

(Vahdat et al., 2015)

706

Observations

 Context for the symbiont programs must be
evolved
 Bidding mechanism

 Support for problem decomposition
 Mix of symbiont programs per host an evolved trait
 Inter host diversity encourages decomposition at host
level

 No prior knowledge on the nature of an appropriate
decomposition
 Provides capacity for reacting to change

 Lower ‘age’ of champion
 Easier to switch in / out functional non-functional
symbionts as contexts change

July 2016 Solving complex problems with
coevolutionary algorithms 81

III.3 Case Study – Diversity
maintenance and Policy reuse

Hierarchical organization of programs, program
abstraction

July 2016 82Solving complex problems with
coevolutionary algorithms

Motivation – Population fails in task
(Lichodzijewski et al., 2011)

July 2016 Solving complex problems with
coevolutionary algorithms 83

Evolving a policy tree
(Lichodzijewski et al., 2011), (Doucette et al., 2012), (Kelly & Heywood 2014, 2015)

July 2016 Solving complex problems with
coevolutionary algorithms 84

707

Evaluating a policy tree
(Lichodzijewski et al., 2011), (Doucette et al., 2012), (Kelly & Heywood 2014, 2015)

July 2016 Solving complex problems with
coevolutionary algorithms 85

Hidden State Truck Backer-upper
(Lichodzijewski et al., 2011)

W
al

l o
bs

ta
cl

e

O
ut

 o
f b

ou
nd

s

(0
,0

)
Y-

ax
is

X-axis trailer

Start
configuration

Defined by point
population

<x,y,θ(cab),θ(trailer)>b),θ > GP
<θ(steering>

Goal

(0
,0

July 2016 86Solving complex problems with
coevolutionary algorithms

Parameterization
(Lichodzijewski et al., 2011)

 SBB
 Max. Eval.: 16,800,000

 8,400,000 per layer
 Max Host Size: 10
 Host Pop.: 120
 Host Gap: 60 (50% turnover)
  (12 other parameters)

 Single layer SBB config.
 16,800,000 gen over 1 layer
 Double Max host size

 SBB (generic)
  Instruction set:

 {+, −, ×, ÷, cos, ln, exp, if R[x]
< R[y] THEN sign(R[x])}

 NEAT
 Max. Eval.: 16,812,000
 NN Pop.: 150
  (17 other parameters)

 Common
 Point pop.: 120

 Point Gap: 20 (17% turnover)
 Uniform sampling (x, y, θc)

 Atomic actions (steering)
 0°, +30°, -30°
 Movement fixed at constant
rate

July 2016 Solving complex problems with
coevolutionary algorithms 87 July 2016 88

Level 0 Level 1 Single Level

NEAT
single

single

single

single

Pop.
Pop. Pop.

Pop.

Solving complex problems with
coevolutionary algorithms

708

July 2016 89J l 2016 89

Sample Solution Trajectories
(1 ‘pin’ per 10 moves)

Solving complex problems with
coevolutionary algorithms July 2016 90

Sequencing of
`Atomic’
Actions

Deployment of
Layer 0 hosts

Key:
+ denotes 30 degrees
- denotes -30 degrees

Key:
Each symbol represents
(1 of 5) different layer 0

Hosts

Solving complex problems with
coevolutionary algorithms

Keepaway soccer
Task definition (Stone et al, 2005)

July 2016 Solving complex problems with
coevolutionary algorithms 91

State variables
-- takers to keepers
-- ball assumes similar description

Game initial state
-- Stochastically defined
-- Robocup server

Interface to policy learner
Prior ‘keeper’ decision tree

Stone et al, (2005)

July 2016 Solving complex problems with
coevolutionary algorithms 92

709

‘Novelty’ style diversity metric
Kelly & Heywood (2014)

 All start states the ‘same’
 Encourage diversity in failure (novelty)

July 2016 Solving complex problems with
coevolutionary algorithms 93

Reward of individual
‘hi’ on game ‘ej’

Distance between current
game (ej) and ‘closest’

historical game (ehist) for
alternate solution (hk)

Reward of
alternate individ.
(hk) in historical

game (ehist)

si =
∑

j∈hhist

(
G(hi, ej)∑

k �=i(1− dist(ej , ehist))G(hk, ehist)

)

Keepaway TRAINING performance
With / Without diversity

July 2016 Solving complex problems with
coevolutionary algorithms 94

Kelly and Heywood (2014)

Keepaway TEST performance
1000 games, Sampled at intervals of 125 generations

July 2016 Solving complex problems with
coevolutionary algorithms 95

Kelly and Heywood (2014)

10

20

30

15x15 20x20 25x25 30x30
Field Size

M
ax

 fit
ne

ss
 sc

or
e

(m
ea

n
ep

iso
de

 le
ng

th
 in

 se
co

nd
s)

SBB Diversity
SarsaRBF

Keepaway TEST performance
1000 games, Different field sizes

July 2016 Solving complex problems with
coevolutionary algorithms 96

Configuration
experienced

during training

710

Cooperative Coevolution
Concluding Comments (1 of 2)

  Highlights
  Separation of context and action

 Arbitrary team sizes under GP
 Maintaining Diversity significant

 Making diversity metrics ‘task free’? (see below)
  Reuse of previous policies leverages diversity for generalization

  Organization of code hierarchically
  Solutions generally simpler than monolithic models
  Easier to react to changing environments

July 2016 Solving complex problems with
coevolutionary algorithms 97

Cooperative Coevolution
Concluding Comments (1 of 2)

  Some open questions (a non exhaustive list!)
  Credit for collective versus individuals
  What learning bias are most appropriate for diversity maintenance

  Task specific metrics
  E.g., (Nelson et al. 2009)

  … versus task independent metrics
  Novelty as an objective (Gomes, Christensen 2013), (Gomes et al., 2016)
  Compression distance (Gomez, 2009)
  Connectivity biases (Clune et al., 2013)
  Intra Team diversity (Kelly, Heywood, 2015), (Gomes et al., 2016)

  … versus how to ‘present’ diversity
  Pareto Multi-objective versus switching between multiple diversity metrics (Donieux, Mouret,

2013)

  Cooperative coevolution and code reuse
  Supervised learning (Jaskowski et al., 2014)
  Reinforcement learning (Kelly, Heywood, 2015), (Didi and Nitschke, 2016)

  Specialization versus generalization
  Heterogeneous versus Homogeneous deployment of policies within teams (Waibel et al., 2009),

(Nitschke et al., 2012)

July 2016 Solving complex problems with
coevolutionary algorithms 98

Cooperative Coevolution
Example Benchmark task domains

  Feature identification to classification
  K. Krawiec, B. Bhanu (2006, 2007); W. Jaskowski et al., (2014)

  Constructing hierarchal models for feature extraction and classification
  Double inverted pendulum / cart pole

  Gomez et al, (2008)
  Capacity for solving the task

  Truck reversal with obstacle
  Lichodzijewski et al, (2011)

  Capacity for solving the task / generalization
  Acrobot

  Doucette et al, (2012)
  Capacity for solving the task / generalization

  Predator-prey strategies
  Nitschke et al., (2012); Yong and Miikkulainen (2009); Rawael et al., (2010); Gomes et al., (2016)

  Task decomposition and collective problem solving
  Distributed multi-object location

  Agogino, Tumar (2008); Knudson, Tumar (2010); Colby, Tumar (2012)
  Task decomposition and (heterogeneous) collective problem solving

  Keepaway or Half field offense (soccer)
  Kelly, Heywood (2014, 2015), (Didi and Nitschke, 2016)

  Task decomposition and (homogeneous) collective problem solving
  Capacity for task / generalization through hierarchical code reuse

  Strategies for solving the Rubik’s Cube
  Smith et al., (2016)

  Task decomposition and capacity for task / generalization through hierarchical code reuse

July 2016 Solving complex problems with
coevolutionary algorithms 99 Solving Complex Problems with

Coevolutionary Algorithms 100

IV. Closing remarks

July 2016 100

711

Closing remarks

 Coevolutionary algorithms = conceptually interesting
and oftentimes efficient paradigm for solving complex
problems
 Addresses key aspects of computational intelligence:

 What/who to learn from?
 How to drive the search/optimization?
 What is solution to my problem?
 How do I decompose my problem?
 How do I make some entities cooperate?

 Many interesting results,
 … even more open questions!

July 2015 101Solving complex problems with
coevolutionary algorithms

Acknowledgements

 The content of this tutorial has benefited from a host of
collaborations over the years including, but not limited to:

John Doucette, Wojciech Jaśkowski, Stephen Kelly, Peter
Lichodzijewski, Paweł Liskowski, Marcin Szubert, Ali Vahdat,
Bartosz Wieloch

 MIH would like to acknowledge funding for aspects of
research reported on in this tutorial from the NSERC
Discovery and CRD programs (Canada).
 KK would like to acknowledge funding for aspects of
research reported on in this tutorial from the National
Science Centre and National Centre for Research and
Development in Poland (Poland).

July 2016 Solving complex problems with
coevolutionary algorithms 102

References
Competitive Coevolution (1 of 3)

  A. Arcuri, X. Yao, Co-evolutionary automatic programming for software development, Information Sciences,
259:412-432, February 2014.

  R. Axelrod (1987) The evolution of strategies in the iterated prisoner’s dilemma. In L. Davis, editor, Genetic
Algorithms in Simulated Annealing, 32–41. Pitman, London.

  A. Bucci, J.B. Pollack, E. de Jong (2004) Automated extraction of problem structure. In K. Deb et al. (Eds.),
Genetic and Evolutionary Computation, GECCO-2004, Part I. Lecture Notes in Computer Science, Vol. 3102,
501–512. Berlin: Springer-Verlag

  S. Y. Chong, P. Tino, and X. Yao (2008) Measuring generalization performance in coevolutionary learning, IEEE
Trans. Evol. Comput., vol. 12, no. 4, 479–505

  S.G. Ficici (2004) Solution concepts in coevolutionary algorithms, Ph.D. thesis, Brandeis University, Waltham, MA.
  S.G. Ficici, J.B. Pollack (2001) Pareto optimality in coevolutionary learning. In J. Kelemen and P. Sosık (Eds.),

Advances in Artificial Life, 6th European Conference, ECAL’01. Lecture Notes in Computer Science, Vol. 2159,
316–325. Berlin: Springer-Verlag

  D.B. Fogel (2002) Blondie24: Playing at the Edge of AI, Morgan Kaufmann Publishers Inc., San Francisco, CA.
  W. Jaśkowski, K. Krawiec and B. Wieloch (2008) Evolving Strategy for a Probabilistic Game of Imperfect

Information using Genetic Programming. Genetic Programming and Evolvable Machines, 9(4):281-294
  W. Jaśkowski, K. Krawiec (2010) Coordinate System Archive for coevolution. In IEEE Congress on Evolutionary

Computation.
  W. Jaśkowski, K. Krawiec (2011) How many dimensions in co-optimization. In GECCO (Companion), 829-830.
  W. Jaśkowski, K.Krawiec (2011) Formal Analysis, Hardness, and Algorithms for Extracting Internal Structure of

Test-Based Problems. Evolutionary Computation, 19(4):639-671.
  E.D. de Jong (2004) Towards a Bounded Pareto-Coevolution Archive. In Proceedings of the IEEE Congress on

Evolutionary Computation, volume 2, 2341– 2348, Portland, Oregon, USA.

July 2016 Solving complex problems with
coevolutionary algorithms 103

References
Competitive Coevolution (2 of 3)

  E.D. de Jong (2004) The Incremental Pareto-Coevolution Archive. In K. Deb et al., editor, Genetic and
Evolutionary Computation–GECCO 2004. Proceedings of the Genetic and Evolutionary Computation Conference.
Part I, 525–536, Seattle, Washington, USA, Springer-Verlag, Lecture Notes in Computer Science Vol. 3102.

  E.D. de Jong, J.B. Pollack (2004) Ideal evaluation from coevolution. Evolutionary Computation, 12(2):159–192.
  E. D. de Jong (2004) The MaxSolve algorithm for coevolution, in GECCO 2005: Proceedings of the 2005

conference on Genetic and evolutionary computation, 2005, 483–489. dissertation, Waltham, MA, USA.
  E.D. de Jong, A. Bucci (2006) DECA: Dimension extracting coevolutionary algorithm. In Proceedings of the 8th

Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, 313–320
  K. Krawiec, (2001) Pairwise Comparison of Hypotheses in Evolutionary Learning. In Machine Learning.

Proceedings of the Eighteenth International Conference, ICML 2001. Morgan Kaufmann Publishers, 266-273.
  K. Krawiec, P. Liskowski (2015) Automatic Derivation of Search Objectives for Test-Based Genetic Programming,

in P. Machado, M. Heywood, J. McDermott (eds.), 18th European Conference on Genetic Programming, Springer
  K. Krawiec and M. Szubert (2011) Learning N-tuple networks for Othello by coevolutionary gradient search, in

Proc. Genetic Evol. Comput. Conf., ACM 355–362.
  P. Liskowski, K. Krawiec, Online Discovery of Search Objectives for Test-based Problems, Evolutionary

Computation Journal, MIT Press, 2016 (accepted).
  T. Miconi (2009) Why coevolution doesn’t work: Superiority and progress in coevolution, In: L. Vanneschi, et al.

(eds.), EuroGP 2009, Springer-Verlag, Berlin Heidelberg New York, 49–60.
  G.A. Monroy, K.O. Stanley, and R. Miikkulainen (2006) Coevolution of neural networks using a layered Pareto

archive. In M. Keijzer et al., editors, GECCO 2006: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, volume 1, 329–336, Seattle, Washington, USA, 8-12 July 2006. ACM Press.

  P. Moscato (1989) On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic
algorithms, Caltech Concurrent Computation Program C3P Rep., vol. 826.

  J. Noble, R.A. Watson (2001) Pareto coevolution: Using performance against coevolved opponents in a game as
dimensions for Pareto selection. In L. Spector et al. (Eds.), Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-2001, 493–500.

  J.B. Pollack, A.D. Blair (1998) Co-evolution in the successful learning of backgammon strategy. Mach. Learn.
32(3), 225–240.

July 2016 Solving complex problems with
coevolutionary algorithms 104

712

References
Competitive Coevolution (3 of 3)

  E. Popovici, A. Bucci, R.P. Wiegand, and E.D. de Jong (2012) Coevolutionary Principles. In Rozenberg, G., Baeck,
T., and Kok, J. N., editors, Handbook of Natural Computing, 987–1033. Springer.

  E. Popovici, E. Winston (2015) A framework for co-optimization algorithm performance and its application
to worst-case optimization, Theoretical Computer Science, Volume 567, Pages 46-73

  C.D. Rosin and R. K. Belew (1997) New methods for competitive coevolution, Evolutionary Computation,
vol. 5, no. 1, 1–29.

  A.L. Samuel (1959) Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development, 3(3):211–229.

  O.G. Selfridge, R.S. Sutton, A.G. Barto (1985) Training and Tracking in Robotics. In Joshi, A. K., editor,
Proceedings of the 9th International Joint Conference on Artificial Intelligence, IJCAI, 670–672, Los
Angeles, CA. Morgan Kaufmann.

  T.C. Service, D.R. Tauritz (2008) A no-free-lunch framework for coevolution, in: Proceedings of the
Genetic and Evolutionary Computation Conference, ACM, 371–378.

  M. Szubert, Coevolutionary (2014) Shaping for Reinforcement Learning, Phd Thesis, Institute of
Computing Science, Poznan University of Technology.

  M. Szubert, W. Jaśkowski, K. Krawiec (2009) Coevolutionary Temporal Difference Learning for Othello. In
IEEE Symposium on Computational Intelligence and Games. 104-111.

  M. Szubert, W. Jaśkowski, P. Liskowski, K. Krawiec (2013) Shaping Fitness Function for Evolutionary
Learning of Game Strategies. In Proceeding of the Fifteenth Annual Conference on Genetic and
Evolutionary Computation Conference, GECCO ’13, 1149–1156, New York, NY, USA. ACM.

  M. Szubert, W. Jaśkowski, K. Krawiec (2013) On Scalability, Generalization, and Hybridization of
Coevolutionary Learning: A Case Study for Othello. Computational Intelligence and AI in Games, IEEE
Transactions on, 5(3):214-226.

  B. F. Skinner (1938) The behavior of organisms: An experimental analysis. Appleton-Century.
  D. Wolpert, W. Macready (2005) Coevolutionary free lunches, IEEE Trans. Evol. Comput. 9: 721–735.

July 2016 Solving complex problems with
coevolutionary algorithms 105

References
Cooperative Coevolution (1 of 3)

  A. K. Agogino, K. Tumar (2008) Efficient evaluation functions for evolving coordination. Evolutionary Computation 16(2):
257–288

  J. Clune, J.-B. Mouret, H. Lipson (2013) The evolutionary origins of modularity. Proceedings of the Royal Society – B 280
20122863

  S. Didi, G. Nitschke (2016) Multi-agent behavior based policy transfer. EvoApplications. LNCS 9598: 181—197
  M. Colby, K. Tumer (2012) Shaping fitness functions for coevolving cooperative multiagent systems. ACM AAMAS 425–432
  S. Doncieux, J.-B. Mouret (2013) Behavioral diversity with multiple behavioral distances. IEEE CEC 1–8
  J. Gomes, P. Mariano, A. L. Christensen (2016) Novelty-driven cooperative coevolution. Evolutionary Computation. To

appear. (2016)
  J. Gomes, A. L. Christensen (2014) Generic behaviour similarity measures for evolutionary swarm robotics. ACM GECCO

199—206
  F. Gomez, J. Schmidhuber, R. Miikkulainen (2008) Accelerated neural evolution through cooperatively coevolved synapses.

Journal of Machine Learning Research 9:937–965
  F. Gomez (2009) Sustaining diversity using behavioural information distance. ACM GECCO 113–120
  W. Jaskowski, K. Krawiec, B. Wieloch (2014) Cross-task code reuse in genetic programming applied to visual learning.

Applied Mathematics and Computer Science 24(1): 183—197
  M. Knudson, K. Tumar (2010) Coevolution of heterogeneous multi-robot teams. ACM GECCO 127–132
  K. Krawiec, B. Bhanu (2007) Visual learning by evolutionary and coevolutionary feature synthesis. IEEE Transactions on

Evolutionary Computation 11(5): 635–650
  K. Krawiec, B. Bhanu (2006) Visual learning by coevolutionary feature synthesis. IEEE Transactions on Systems, Man and

Cybernetics. Prt B. 35: 409–425
  J. Maynard Smith (1991) A Darwinian view of symbiosis. Chapter 3 in Symbiosis as a source of evolutionary innovation.

(eds) L. Margulis and R. Fester (MIT Press)
  D. E. Moriarty, R. Miikkulainen (1998) Forming neural networks through efficient and adaptive coevolution. Evolutionary

Computation 5(4):373–399

July 2016 Solving complex problems with
coevolutionary algorithms 106

References
Cooperative Coevolution (2 of 3)

  A. L. Nelson, G. J. Barlow, L. Doitsidis (2009) Fitness functions in evolutionary robotics: A survey and analysis.
Robotics and Autonomous Systems 57: 345–370

  G. S. Nitschke, A. E. Eiben, M. C. Schut (2012) Evolving team behaviors with specialization. Genetic
Programming and Evolvable Machines 13(4): 493—536

  L. Panait, S. Luke, R. P. Wiegand (2006) Biasing coevolutionary search for optimal multiagent behaviors. IEEE
Transactions on Evolutionary Computation 10(6): 629–645

  L. Panait, K. Tuyls, S. Luke (2008) Theoretical advantages of lenient learners: An evolutionary game theoretic
perspective. Journal of Machine Learning Research 9: 423–457

  M. A. Potter, K. A. De Jong (2000) Cooperative coevolution: An architecture for coevolving coadapted
subcomponents. Evolutionary Computation 8(1): 1–29

  A. Rawal, P. Rajagoplan, R. Miikkulainen (2010) Constructing competitive and cooperative agent behavior using
coevolution. IEEE CIG 107—114

  J. Rubini, R. B. Heckendorn, T. Soule (2009) Evolution of team composition in multi-agent systems. ACM GECCO
1067–1072

  P. Stone, R. Sutton, G. Kuhlmann (2005) Reinforcement learning for RoboCup soccer Keepaway. Adaptive
Behavior 13: 165–188

  R. Thomason, T. Soule (2007) Novel ways of improving cooperation and performance in ensemble classifiers.
ACM GECCO 1708–1716

  C. H. Yong and R. Miikkulainen (2009) Coevolution of role-based cooperation in multi-agent systems. IEEE
Transactions on Autonomous Mental Development 1(3): 170—186

  M. Waibel, L. Keller, D. Floreano (2009) Genetic team composition and level of selection in the evolution of
cooperation. IEEE Transactions on Evolutionary Computation. 13(3):648—660

  S. Wu, W. Banzhaf (2011) Rethinking multilevel selection in genetic programming. ACM GECCO. 1403 – 1410

July 2016 Solving complex problems with
coevolutionary algorithms 107

References
Cooperative Coevolution (3 of 3)

  J. A. Doucette, P. Lichodzijewski, M. I. Heywood (2012) Hierarchical task decomposition through
symbiosis in reinforcement learning. ACM GECCO 97–104

  Finding optimal solutions to the Acrobot ‘handstand’ task
  Complexity through hierarchical code reuse

  S. Kelly, M.I. Heywood (2014) On diversity, teaming, and hierarchical policies: Observations from the
Keepaway soccer task. EuroGP LNCS 8599:75–86

  Diversity maintenance, modularity and generalization under keepaway
  Complexity through hierarchical code reuse
  https://web.cs.dal.ca/~skelly/keepaway-gecco-2015/

  S. Kelly, M.I. Heywood (2015) Knowledge transfer from keepaway soccer to half- field offense through
program symbiosis: Building simple programs for a complex task. ACM GECCO.

  Task free diversity metrics, scaling to more difficult problems with task transfer
  P. Lichodzijewski, M. I. Heywood (2008) Managing team-based problem solving with symbiotic bid-based

genetic programming. ACM GECCO 363–370
  Basic architecture, no hierarchy, supervised learning; benchmark with multi-class classification and LCS

  P. Lichodzijewski, M. I. Heywood (2010) Symbiosis, Complexification and Simplicity under GP. ACM
GECCO 853–860

  Simplified basic architecture, no hierarchy, supervised learning; benchmark against monolithic GP solutions
  P. Lichodzijewski, J.A. Doucette, M. I. Heywood (2011) A symbiotic framework for hierarchical policy

search. FCS, Dalhousie University. Tech. Report CS-2011-06.
  Truck reversal domain tutorial
  http://www.cs.dal.ca/research/techreports/cs-2011-06

  R. J. Smith, S. Kelly, M. I. Heywood (2016) Discovering Rubik's Cube Subgroups using Coevolutionary
GP -- A Five Twist Experiment. ACM GECCO.

  Scaling to more difficult tasks with diversity maintenance and task transfer
  Complexity through hierarchical code reuse

  A. Vahdat, J. Miller, A. McIntyre, M. I. Heywood, N. Zincir-Heywood (2015) Evolving GP classifiers for
streaming data tasks with concept change and label budgets. Handbook of GP Applications. (Springer)

  Significance of coevolving task decomposition under non-stationary streaming data

July 2016 Solving complex problems with
coevolutionary algorithms 108

713

