
A CUDA Implementation of an Improved Decomposition
Based Evolutionary Algorithm for Multi-Objective

Optimization

Md Asafuddoula, Hemant Kumar Singh and Tapabrata Ray
School of Engineering and Information Technology, The University of New South Wales, Australia

md.asaf@adfa.edu.au, h.singh@adfa.edu.au, t.ray@adfa.edu.au

ABSTRACT

In last few years, the concept of decomposition has been exten-

sively used in a number of evolutionary algorithms, wherein a multi-

objective problem is solved as a set of single objective sub-problems.

Such algorithms have demonstrated significant break-through for

solving problems with four or more objectives (also referred to as

many-objective optimization problems). Along these lines, authors

have previously proposed a decomposition based evolutionary al-

gorithm (DBEA). While DBEA is amenable to parallelization, ex-

isting implementations of DBEA (and a number of other such algo-

rithms) use several serial components which are designed for sin-

gle CPU applications. Recently, parallel computing infrastructure

has become increasingly affordable, e.g. graphic processing units

(GPUs) and application programming interfaces such as compute

unified device architecture (CUDA). Hence, there is a significant

interest in the research community to redesign such algorithms to

exploit the benefits of parallel computing infrastructure. This work

presents an improved CUDA based DBEA. The algorithm aims to

offer computational savings via parallelization, while maintaining

its performance close to existing state-of-the-art sequential imple-

mentations. Parallel structure is deployed for population initializa-

tion, evaluation, and selection with preemptive association strate-

gies. Performance of the parallel implementation is presented and

compared with its sequential counterpart on a number of well es-

tablished benchmarks to highlight its benefits.

Keywords

Many-objective Optimization; CUDA; Parallel computation; De-

composition Based Evolutionary Algorithm

1. INTRODUCTION
Over the past decade, evolutionary algorithms based on decom-

position [1, 5] shown significant success in solving multi-objective

optimization problems. While originally proposed for bi-objective

optimization, they have been since extended to deal with prob-

lems involving four or more objectives (many-objective optimiza-

tion problems). However, the computational expense involved in

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO’16 Companion July 20-24, 2016, Denver, CO, USA

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4323-7/16/07.

DOI: http://dx.doi.org/10.1145/2908961.2908971

solving many-objective problems still remains high. Benchmarking

the performance of such algorithms is often non-trivial due to the

computational overhead involved in executing them with large pop-

ulation sizes (especially for many-objective problems). While par-

allelization can offer computational savings, it needs to be ensured

that parallelization of the algorithm components does not result in

inferior performance. Since such algorithms have several compo-

nents that are typically designed for serial operation, full benefits

of parallelization have not yet been achieved. In recent years, there

have been attempts to use the graphics processing units (GPU) for

data parallel computation. Affordable desktops with thousands of

cores can be deployed for this purpose. In the context of decom-

position based algorithms, a GPU implementation of MOEA/D [5]

using Ant colony optimization (MOEA/D-ACO) appears in [4]. A

GPU based algorithms relying on fast hypervolume computation

(SMGPUS-EMOA) was proposed in [3].

This paper presents an improved CUDA based implementation

of DBEA (referred to as cuDBEA) with its serial components re-

placed by efficient schemes that exploit parallel computing hard-

ware. These include improved parallel sort via faster CUDA reduc-

tion on shared memory, parallel crossover and mutation strategy,

and a local dominance based association of the offspring with pre-

ferred reference directions. We evaluate the performance of cuD-

BEA on several numerical benchmarks of the DTLZ test suite and

compare it with its sequential implementation (referred to here as

seDBEA). The results show significant benefits in terms of compu-

tational efficiency without affecting its performance.

1.1 cuDBEA
Similar to I-DBEA [1], cuDBEA uses a set of reference points

generated via NBI [2]. cuDBEA initially generates the random

states for each individual in parallel and saves them in global mem-

ory. The population is then initialized simultaneously using 2D

blocks (i.e., number of individuals in x dimension and the number

of decision variables in y dimension) of grid and the information

is stored in the device global memory. A pseudo-code of the algo-

rithm is presented in Algorithm 1. Computation of extreme point

is obtained using faster non-dominated ranking while other compo-

nents such as computation of ideal point, normalization and compu-

tation of distances are similar as described in [1], except cuDBEA

utilizes faster CUDA reduction techniques on shared memory. Mat-

ing partners for a solution are selected using a roulette wheel selec-

tion and offspring are generated via simulated binary crossover and

polynomial mutation kernel(Poly) [2].

The association strategy used here is different from the one used

in [2], wherein the individuals are associated based on the per-

pendicular distance from the reference direction to the individual

whereas, a theta incorporated local non-domination technique is

71

Algorithm 1 cuDBEA

Input: Genmax maximum number of generations, w a set of reference points

1: Initialize the reference points using NBI

2: Generate the random seeds

<<< NumBlock,NumThread >>>

3: Initialize population <<< Grid∗, Block >>>

4: Evaluate the population

<<< NumBlock,NumThread >>>

5: Compute the Ideal point for each objective using CUDA reduction and Thread-

fence

<<< NumBlock,NumThread >>>

6: Compute the Extreme point

<<< NumBlock,NumThread >>>

7: while (gen ≤ Genmax) do

8: Roulette wheel selection

<<< NumBlock,NumThread >>>

9: Generate offspring using SBX

<<< Grid,Block >>>

10: Perform polynomial mutation <<< Grid,Block >>>

11: Evaluate the offspring

<<< NumBlock,NumThread >>>

12: Update Ideal and Extreme points

<<< NumBlock,NumThread >>>

13: Associate the offspring to specific direction

<<< NumBlock,NumThread >>>

14: Update population <<< Grid,Block >>>

15: end while
{*NumBlock =

⌊

NP
NumThread

⌋

, NumThread = 1024,

Grid =
(

⌊

D
BlockSizeD

⌋

,
⌊

NP
BlockSizeNP

⌋

)

, Block =

(

BlockSizeD,BlockSizeNP
)

, BlockSizeD = 32,BlockSizeNP = 32}

applied to balance the needs of parallelization versus performance.

Solutions within a theta threshold (θth) are considered as a set of

promising individuals (i.e., ηc) that would attempt to associate with

a reference direction. θ is computed for an ith individual along the

jth reference direction as follows.

θ = cos
−1

(

F
i.wj

‖Fi‖ × ‖wj‖

)

(1)

Local domination is applied to ηc (i.e., a set of promising individ-

uals with a given theta) to identify the non-dominated individuals.

The individual with minimum d2 is then associated with a particu-

lar reference direction. Parent individuals are replaced in parallel.

If the child solution dominates the parent individual, the parent in-

dividual is replaced. In case a child solution is non-dominated with

respect to the individuals in the population, it attempts to enter the

population via a replacement strategy proposed in [1].

1.2 Numerical experiments
In this section, we analyze the performance of cuDBEA and se-

rial DBEA (seDBEA) based on convergence and computational ef-

ficiency using the set of scalable DTLZ problems [2]. Firstly, both

algorithms are run for a fixed number of generations (i.e., 1000)

on 3-objective DTLZ1, DTLZ2 problems with the population sizes

are set as 91, 105, 210, 300, 496, 630 and 1035. The reference

directions were generated using the NBI [2] method with sample

sizes 12, 13, 19, 23, 30, 34, and 44. Speed-up (Sp) is measured as

Sp = Ts(n,1)
T (n,p)

, where Ts is the computational time of a sequential

algorithm for a problem of n tasks by a single processor, T (n, p)
is the computational time of a parallel algorithm with p processors.

To assess the performance, hypervolume (HV) [6] is used as a per-

formance metric. The results of cuDBEA and seDBEA are shown

in Table 1 and the corresponding comparison of computational time

is shown in Figure 1. One can see that the results obtained from

cuDBEA are better/similar in comparison with seDBEA. The time

taken by cuDBEA is significantly less compared to seDBEA, and

the difference grows rapidly with the increase in population size.

Table 1: Hypervolume (Meanstandard deviation) for DTLZ bench-

mark problems. Dark grey and light grey backgrounds indicate

better mean and standard deviation, respectively.
Prob. (pop-

size)

cuDBEA seDBEA Ref∗. Speed-

up

DTLZ1(91) 0.786214.7401e−03 0.784761.0306e−02 [0.5023]3 1.0521

DTLZ1(105) 0.789724.9360e−03 0.788426.0686e−03 [0.5015]3 1.2159

DTLZ1(210) 0.800356.2102e−03 0.800206.4234e−03 [0.5002]3 2.5092

DTLZ1(300) 0.806025.9795e−03 0.804581.0495e−02 [0.5002]3 3.6174

DTLZ1(496) 0.984122.2525e−04 0.983818.6038e−04 [1.1380]3 5.8569

DTLZ1(630) 0.959766.8885e−04 0.959062.8329e−03 [0.8311]3 7.5521

DTLZ1(1035) 0.842052.2555e−03 0.839057.3721e−03 [0.5231]3 11.931

DTLZ2(91) 0.409122.1738e−03 0.409782.6031e−03 [1.0000]3 0.9866

DTLZ2(105) 0.414181.8591e−03 0.414602.0694e−03 [1.0000]3 1.1354

DTLZ2(210) 0.431761.6537e−03 0.430582.8611e−03 [1.0000]3 2.3533

DTLZ2(300) 0.436912.3367e−03 0.437452.7414e−03 [1.0000]3 3.4451

DTLZ2(496) 0.443992.6055e−03 0.443882.2481e−03 [1.0000]3 5.5362

DTLZ2(630) 0.455261.5562e−03 0.454391.8484e−03 [1.0043]3 7.1969

DTLZ2(1035) 0.453171.5601e−03 0.452072.1637e−03 [1.0002]3 11.564

*Reference point used to compute the hypervolume: Ref = fmax =
max([fmax

1 , fmax
2 ,fmax

m]), same for each objective.

0 200 400 600 800 1,000 1,200
0

50

100

150

200

250

300

350

Population Size

E
x
ec

u
ti

o
n

ti
m

e
(S

ec
.)

CPU (seDBEA)
GPU (cuDBEA)

0 100 200 300 400 500 600 700 800 900 1,000
0

50

100

150

200

250

300

350

Population Size

E
x
ec

u
ti

o
n

ti
m

e
(S

ec
.)

CPU (seDBEA)
GPU (cuDBEA)

Figure 1: Computational time comparison between GPU (cuD-

BEA) and CPU (seDBEA) for DTLZ1 and DTLZ2.

1.3 Summary and conclusion
Parallel implementation of DBEA (i.e., cuDBEA) is proposed

and compared with its sequential counterpart (seDBEA). It is demon-

strated that cuDBEA achieved better or similar performance on the

selected test problems, while offering significant savings in com-

putational time. It is also clear that serial implementations do not

scale well with increasing population size.

Acknowledgments

The third author would like to acknowledge Future Fellowship and

Discovery Project grants from the Australian Research Council (ARC).

2. REFERENCES
[1] M. Asafuddoula, T. Ray, and R. Sarker. A decomposition based evolutionary

algorithm for many objective optimization. IEEE Transactions on Evolutionary

Computation, 19(3):445–460, June 2014.

[2] K. Deb and H. Jain. An evolutionary many-objective optimization algorithm

using reference-point-based nondominated sorting approach, part I: Solving

problems with box constraints. IEEE Transactions on Evolutionary

Computation, 18(4):577–601, 2014.

[3] E. Lopez, L. Antonio, and C. Coello Coello. A gpu-based algorithm for a faster

hypervolume contribution computation. In A. Gaspar-Cunha,

C. Henggeler Antunes, and C. C. Coello, editors, Evolutionary Multi-Criterion

Optimization, volume 9019 of Lecture Notes in Computer Science, pages 80–94.

Springer International Publishing, 2015.

[4] M. Zangari De Souza and A. Ramirez Pozo. A gpu implementation of

moea/d-aco for the multiobjective traveling salesman problem. In Intelligent

Systems (BRACIS), 2014 Brazilian Conference on, pages 324–329, Oct 2014.

[5] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm based

on decomposition. IEEE Transactions on Evolutionary Computation,

11(6):712–731, 2007.

[6] E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of pareto set

approximations. In Multiobjective Optimization, volume 5252 of Lecture Notes

in Computer Science, pages 373–404. 2008.

72

